Skip to main content
Log in

Functional Analysis of Ribonucleotide Reductase from Cordyceps militaris Expressed in Escherichia coli

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cordyceps militaris produces cordycepin (3′-deoxyadenosine), which has various activities, including anti-oxidant, anti-tumoral, anti-viral, and anti-inflammatory. Ribonucleotide reductase (RNR) seems to be a candidate to produce cordycepin in C. militaris because RNR catalyzes the reduction of nucleotides to 2′-deoxynucleotides, whose structures are similar to that of cordycepin. However, the role of RNR has not been confirmed yet. In this study, complementary DNAs (cDNAs) of C. militaris RNR (CmRNR) large and small subunits (CmR1 and CmR2) were cloned from C. militaris NBRC9787 to investigate the function of CmRNR for its cordycepin production. C. militaris NBRC9787 began to produce cordycepin when grown in a liquid surface culture in medium composed of glucose and yeast extract for 15 days. CmR1 cDNA and CmR2 cDNA were obtained from its genomic DNA and from total RNA extracted from its mycelia after cultivation for 21 days, respectively. Recombinant CmR1 and CmR2 were expressed individually in Escherichia coli and purified. Purified recombinant CmR1 and CmR2 showed RNR activity toward adenosine diphosphate (ADP) only when two subunits were mixed but only show the reduction of ADP to 2′-deoxyADP. These results indicate that the pathway from ADP to 3′deoxyADP via CmRNR does not exist in C. militaris and cordycepin production in C. militaris may be mediated by other enzymes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Valverde, M. E., Hernández-Pérez, T., & Paredes-López, O. (2015). Edible mushrooms: improving human health and promoting quality life. International Journal of Microbiology, 2015, 376387.

    Article  Google Scholar 

  2. Zheng, P., Xia, Y., Zhang, S., & Wang, C. (2013). Genetics of Cordyceps and related fungi. Applied Microbiology and Biotechnology, 97, 2797–2804.

    Article  CAS  Google Scholar 

  3. Das, S. L., Masuda, M., Sakurai, A., & Sakakibara, M. (2010). Medicinal uses of the mushroom Cordyceps militaris: current state and prospects. Fitoterapia, 81, 961–968.

    Article  Google Scholar 

  4. Zhao, J., Xie, J., Wang, L. Y., & Li, S. P. (2014). Advanced development in chemical analysis of Cordyceps. Journal of Pharmaceuticals and Biomedical Analysis, 87, 271–289.

    Article  CAS  Google Scholar 

  5. Cunningham, K. G., Manson, W., Spring, F. S., & Hutchinson, S. A. (1950). Cordycepin, a metabolic product isolated from cultures of Cordyceps militaris (Linn.) link. Nature, 166, 949.

    Article  CAS  Google Scholar 

  6. Zheng, P., Xia, Y., Xia, G., Xiong, C., Hu, X., Zhang, S., Zheng, H., Huang, Y., Zhou, Y., Wang, S., Zhao, G. P., Liu, X., ST Leger, R. J., & Wang, C. (2011). Genome sequence of the insect pathogenic fungus Cordyceps militaris, a valued traditional Chinese medicine. Genome Biology, 12, R116.

    Article  CAS  Google Scholar 

  7. Yin, Y., Yu, G., Chen, Y., Jiang, S., Wang, M., Jin, Y., Lan, X., Liang, Y., & Sun, H. (2012). Genome-wide transcriptome and proteome analysis on different developmental stages of Cordyceps militaris. PloS One, 7, e51853.

    Article  CAS  Google Scholar 

  8. Xiang, L., Li, Y., Zhu, Y., Luo, H., Li, C., Xu, X., Sun, C., Song, J., Shi, L., He, L., Sun, W., & Chen, S. (2014). Transcriptome analysis of the Ophiocordyceps sinensis fruiting body reveals putative genes involved in fruiting body development and cordycepin biosynthesis. Genomics, 103, 154–159.

    Article  CAS  Google Scholar 

  9. Zhang, Q., Liu, Y., Di, Z., Han, C. C., & Liu, Z. (2016). The strategies for increasing cordycepin production of Cordyceps militaris by liquid fermentation. Fungal Genomics & Biology, 6, 1000134.

    Article  Google Scholar 

  10. Kuo, H. C., Huang, I. C., & Chen, T. Y. (2015). Cordyceps s.L. (Ascomycetes) species used as medicinal mushrooms are closely related with higher ability to produce cordycepin. International Journal of Medicinal Mushrooms, 17, 1077–1085.

    Article  Google Scholar 

  11. Kolberg, M., Strand, K. R., Graff, P., & Andersson, K. K. (2004). Structure, function, and mechanism of ribonucleotide reductases. Biochimica et Biophysica Acta, 1699, 1–34.

    Article  CAS  Google Scholar 

  12. Håkansson, P., Dahl, L., Chilkova, O., Domkin, V., & Thelamder, L. (2006). The Schizosaccharomyces pombe replication inhibitor Spd1 regulates ribonucleotide reductase activity and dNTPs by binding to the large Cdc22 subunit. Journal of Biological Chemistry, 281, 1778–1783.

    Article  Google Scholar 

  13. Minnihan, E. C., Ando, N., Brignole, E. J., Olashansky, L., Chittuluru, J., Asturias, F. J., Drennan, C. L., Nocera, D. G., & Stubbe, J. (2013). Generation of a stable, aminotyrosyl radical-induced α2β2 complex of Escherichia coli class Ia ribonucleotide reductase. Proceedings of the National Academy of Sciences of the United States of America, 110, 3835–3840.

    Article  CAS  Google Scholar 

  14. Guarino, E., Salguero, I., & Kearsey, S. E. (2014). Cellular regulation of ribonucleotide reductase in eukaryotes. Seminars in Cell and Developmental Biology, 30, 97–103.

    Article  CAS  Google Scholar 

  15. Reichard, P. (2010). Ribonucleotide reductases: substrate specificity by allostery. Biochemical and Biophysical Research Communications, 396, 19–23.

    Article  CAS  Google Scholar 

  16. Sanvisens, N., Romero, A. M., An, X., de Llanos, R., Martínez-Pastor, M. T., Baňó, M. C., Huang, M., & Puig, S. (2014). Yeast Dun1 kinase regulates ribonucleotide reductase inhibitor Sml1 in response to iron deficiency. Molecular and Cellular Biology, 34, 3259–3271.

    Article  Google Scholar 

  17. Zhang, Z., Yang, K., Cheng, C. C., Feser, J., & Huang, M. (2007). Role of the C-terminus of the ribonucleotide reductase large subunit in enzyme regeneration and its inhibition by Sml1. Proceedings of the National Academy of Sciences of the United States of America, 104, 2217–2222.

    Article  CAS  Google Scholar 

  18. Wu, X., & Huang, M. (2008). Dif1 controls subcellular localization of ribonucleotide reductase by mediating nuclear import of the R2 subunit. Molecular and Cellular Biology, 28, 7156–7167.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Authors thank Mr. Yasuhiro Kojima who performed the gene manipulation and HPLC measurement.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enoch Y. Park.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kato, T., Ahmad, S. & Park, E.Y. Functional Analysis of Ribonucleotide Reductase from Cordyceps militaris Expressed in Escherichia coli . Appl Biochem Biotechnol 182, 1307–1317 (2017). https://doi.org/10.1007/s12010-017-2400-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-017-2400-0

Keywords

Navigation