Skip to main content
Log in

Converting Chemical Oxygen Demand (COD) of Cellulosic Ethanol Fermentation Wastewater into Microbial Lipid by Oleaginous Yeast Trichosporon cutaneum

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Cellulosic ethanol fermentation wastewater is the stillage stream of distillation column of cellulosic ethanol fermentation broth with high chemical oxygen demand (COD). The COD is required to reduce before the wastewater is released or recycled. Without any pretreatment nor external nutrients, the cellulosic ethanol fermentation wastewater bioconversion by Trichosporon cutaneum ACCC 20271 was carried out for the first time. The major components of the wastewater including glucose, xylose, acetic acid, ethanol, and partial of phenolic compounds could be utilized by T. cutaneum ACCC 20271. In a 3-L bioreactor, 2.16 g/L of microbial lipid accumulated with 55.05% of COD reduced after a 5-day culture of T. cutaneum ACCC 20271 in the wastewater. The fatty acid composition of the derived microbial lipid was similar with vegetable oil, in which it could be used as biodiesel production feedstock. This study will both solve the environmental problem and offer low-cost lipid feedstock for biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y. Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology., 96(6), 673–686.

    Article  CAS  Google Scholar 

  2. Palmqvist, E., & Hahn-Hagerdal, B. (2000). Fermentation of lignocellulosic hydrolysates. II: inhibitors and mechanisms of inhibition. Bioresource Technology., 74(1), 25–33.

    Article  CAS  Google Scholar 

  3. Humbird, D., Davis, R., Tao, L., Kinchin, C., Hsu, D., Aden, A. (2011). Process design and economics for biochemical conversion of lignocellulosic biomass to ethanol. Technical report. NREL/TP-5100-47764

  4. Qureshi, A. S., Zhang, J., & Bao, J. (2015). High ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted Saccharomyces cerevisiae strain. Bioresource Technology., 189, 399–404.

    Article  CAS  Google Scholar 

  5. Sarkar, N., Ghosh, S. K., Bannerjee, S., & Aikat, K. (2012). Bioethanol production from agricultural wastes: an overview. Renewable Energy, 37(1), 19–27.

    Article  CAS  Google Scholar 

  6. Zhao, Y. B. (2013). Process design of wastewater treatment for the NREL cellulosic ethanol model. Advanced Materials Research., 777, 365–369.

    Article  Google Scholar 

  7. Wang, Z., & Zheng, W. (2012). Study on the treatment of wastewater from cellulose ethanol production and its engineering application. Industrial Water Treatment., 32(8), 88–91.

    Google Scholar 

  8. Liu, J, Zhang, C., Zhang, G., Gan, H. (2011). Reclaiming bioenergy from alcohol wastewater by upflow anaerobic solid reactor process and high value use of biogas. International Conference on New Technology of Agricultural Engineering, Zibo, China. 537–539

  9. Gude, V. G. (2016). Wastewater treatment in microbial fuel cells—an overview. Journal of Cleaner Production., 122, 287–307.

    Article  CAS  Google Scholar 

  10. Xue, F. Y., Zhang, X., Luo, H., & Tan, T. (2006). A new method for preparing raw material for biodiesel production. Process Biochemistry., 41(7), 1699–1702.

    Article  CAS  Google Scholar 

  11. Hall, J., Hetrick, M., French, T., Hernandez, R., Donaldson, J., Mondala, A., & Holmes, W. (2011). Oil production by a consortium of oleaginous microorganisms grown on primary effluent wastewater. Journal of Chemical Technology and Biotechnology, 86(1), 54–60.

    Article  CAS  Google Scholar 

  12. Ling, J., Nip, S., & Shim, H. (2013). Enhancement of lipid productivity of Rhodosporidium toruloides in distillery wastewater by increasing cell density. Bioresource Technology., 146C(10), 301–309.

    Article  Google Scholar 

  13. Zhou, W., Wang, W., Li, Y., & Zhang, Y. (2013). Lipid production by Rhodosporidium toruloides Y2 in bioethanol wastewater and evaluation of biomass energetic yield. Bioresource Technology., 127(1), 435–440.

    Article  CAS  Google Scholar 

  14. Peng, W., Huang, C., Chen, X., Xiong, L., Chen, X., Chen, Y., & Ma, L. (2013). Microbial conversion of wastewater from butanol fermentation to microbial oil by oleaginous yeast Trichosporon dermatis. Renewable Energy., 55(C), 31–34.

    Article  CAS  Google Scholar 

  15. Chen, X., Li, Z., Zhang, X., Hu, F., Dewey, D. Y., & Bao, J. (2009). Screening of oleaginous yeast strains tolerant to lignocellulose degradation compounds. Applied Biochemistry and Biotechnology., 159(3), 591–604.

    Article  CAS  Google Scholar 

  16. Huang, C., Chen, X. F., Xiong, L., Chen, X. D., Ma, L. L., & Chen, Y. (2013). Single cell oil production from low-cost substrates: the possibility and potential of its industrialization. Biotechnology Advances., 31(2), 129–139.

    Article  CAS  Google Scholar 

  17. Papanikolaou, S., & Aggelis, G. (2011). Lipids of oleaginous yeasts. Part II: technology and potential applications. European Journal of Lipid Science and Technology., 113(8), 1052–1073.

    Article  CAS  Google Scholar 

  18. Wang, J., Gao, Q., Zhang, H., & Bao, J. (2016). Inhibitor degradation and lipid accumulation potentials of oleaginous yeast Trichosporon cutaneum using lignocellulose feedstock. Bioresource Technology., 218, 892–901.

    Article  CAS  Google Scholar 

  19. Hu, C., Wu, S., Wang, Q., Jin, G., Shen, H., & Zhao, Z. K. (2011). Simultaneous utilization of glucose and xylose for lipid production by Trichosporon cutaneum. Biotechnology for Biofuels., 4(1), 25.

    Article  CAS  Google Scholar 

  20. Mörtberg, M., & Neujahr, H. Y. (1986). Transport and hydrolysis of disaccharides by Trichosporon cutaneum. Journal of Bacteriology., 168(2), 734–738.

    Article  Google Scholar 

  21. Zhang, J., Zhu, Z., Wang, X., Wang, N., Wang, W., & Bao, J. (2010). Biodetoxification of toxins generated from lignocellulose pretreatment using a newly isolated fungus, Amorphotheca resinae ZN1, and the consequent ethanol fermentation. Biotechnology for Biofuels., 3(47), 26.

    Article  Google Scholar 

  22. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of sugars, byproducts, and degradation products in liquid fraction process samples. NREL/TP-510-42623. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  23. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2008). Determination of structural carbohydrates and lignin in biomass. NREL/TP-510-42618. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  24. Adney, B., & Baker, J. (1996). Measurement of cellulase activities, laboratory analytical procedure (LAP). LAP-006. Golden: National Renewable Energy Laboratory.

    Google Scholar 

  25. Ghose, T. K. (1987). Measurement of cellulase activities. Pure and Applied Chemistry., 59(2), 257–268.

    Article  CAS  Google Scholar 

  26. He, Y., Zhang, J., & Bao, J. (2014). Dry dilute acid pretreatment by co-currently feeding of corn Stover feedstock and dilute acid solution without impregnation. Bioresource Technology., 158(4), 360–364.

    Article  CAS  Google Scholar 

  27. He, Y., Zhang, J., & Bao, J. (2016). Acceleration of biodetoxification on dilute acid pretreated lignocellulose feedstock by aeration and the consequent ethanol fermentation evaluation. Biotechnology for Biofuels., 9(1), 1–13.

    Article  CAS  Google Scholar 

  28. Zhang, J., Chu, D., Huang, J., Yu, Z., Dai, G., & Bao, J. (2010). Simultaneous saccharification and ethanol fermentation at high corn stover solids loading in a helical stirring bioreactor. Biotechnology and Bioengineering., 105(4), 718–728.

    CAS  Google Scholar 

  29. China National Standards, (1989). Water quality-Determination of the chemical oxygen demand-potassium dichromate method of. Series number #11914–1989

  30. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry., 31(3), 426–428.

    Article  CAS  Google Scholar 

  31. Ainsworth, E. A., & Gillespie, K. M. (2007). Estimation of total phenolic content and other oxidation substrates in plant tissues using Folin–Ciocalteu reagent. Nature Protocol., 2(4), 875–877.

    Article  CAS  Google Scholar 

  32. Folch, J., Lee, M., & Sloane-Stanle, G. H. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry., 226(1), 497–509.

    CAS  Google Scholar 

  33. Zhang, T., Chi, Z. M., & Sheng, J. (2009). A highly thermosensitive and permeable mutant of the marine yeast Cryptococcus aureus G7a potentially useful for single-cell protein production and its nutritive components. Marine Biotechnology., 11(2), 280–286.

    Article  CAS  Google Scholar 

  34. Xiong, L., Huang, C., Li, X., Chen, X., Wang, B., Wang, C., Zeng, X., & Chen, X. (2015). Acetone-butanol-ethanol (ABE) fermentation wastewater treatment by oleaginous yeast Trichosporon cutaneum. Applied Biochemistry and Biotechnolog., 176(2), 1–9.

    Google Scholar 

  35. Ramos, M. J., Fernández, C. M., Casas, A., Rodríguez, L., & Pérez, A. (2009). Influence of fatty acid composition of raw materials on biodiesel properties. Bioresource Technology., 100(1), 261–268.

    Article  CAS  Google Scholar 

  36. Chen, X. F., Huang, C., Xiong, L., Chen, X., Chen, Y., & Ma, L. (2012). Oil production on wastewaters after butanol fermentation by oleaginous yeast Trichosporon coremiiforme. Bioresource Technology., 118(8), 594–597.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Huizhan Zhang or Jie Bao.

Electronic supplementary material

ESM 1

(DOCX 26 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Hu, M., Zhang, H. et al. Converting Chemical Oxygen Demand (COD) of Cellulosic Ethanol Fermentation Wastewater into Microbial Lipid by Oleaginous Yeast Trichosporon cutaneum . Appl Biochem Biotechnol 182, 1121–1130 (2017). https://doi.org/10.1007/s12010-016-2386-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2386-z

Keywords

Navigation