Skip to main content
Log in

Characterization of Aldehyde Dehydrogenases Applying an Enzyme Assay with In Situ Formation of Phenylacetaldehydes

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Herein, different dehydrogenases (DH) were characterized by applying a novel two-step enzyme assay. We focused on the NAD(P)+-dependent phenylacetaldehyde dehydrogenases because they produce industrially relevant phenylacetic acids, but they are not well studied due to limited substrate availability. The first assay step comprises a styrene oxide isomerase (440 U mg−1 protein) which allows the production of pure phenylacetaldehydes (>70 mmol L−1) from commercially available styrene oxides. Thereafter, a DH of interest can be added to convert phenylacetaldehydes in a broad concentration range (0.05 to 1.25 mmol L−1). DH activity can be determined spectrophotometrically by following cofactor reduction or alternatively by RP-HPLC. This assay allowed the comparison of four aldehyde dehydrogenases and even of an alcohol dehydrogenase with respect to the production of phenylacetic acids (up to 8.4 U mg−1 protein). FeaB derived from Escherichia coli K-12 was characterized in more detail, and for the first time, substituted phenylacetaldehydes had been converted. With this enzyme assay, characterization of dehydrogenases is possible although the substrates are not commercially available in sufficient quality but enzymatically producible. The advantages of this assay in comparison to the former one are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

adh/ADH:

Gene of/gene product aldehyde dehydrogenase

adh-/ADH-CWB2:

Gene of/gene product aldehyde dehydrogenase of Gordonia rubripertincta CWB2

ADH-Sc:

Aldehyde dehydrogenase of Saccharomyces cerevisiae

AlDH-Sc:

Alcohol dehydrogenase of Saccharomyces cerevisiae

DH:

Dehydrogenases

feaB/FeaB:

Gene of/gene product phenylacetaldehyde dehydrogenase

feaB-/FeaB-K-12:

Gene of/gene product phenylacetaldehyde dehydrogenase of Escherichia coli K-12

PAD:

Phenylacetaldehyde dehydrogenase

PMS:

Phenazine methosulfate

SOI:

Styrene oxide isomerase of Rhodococcus opacus 1CP

styC :

Gene of styrene oxide isomerase of Rhodococcus opacus 1CP

References

  1. Sophos, N. A., Pappa, A., Ziegler, T. L., & Vasiliou, V. (2001). Aldehyde dehydrogenase gene superfamily: the 2000 update. Chemico-Biological Interactions, 130–132(1–3), 323–337.

    Article  Google Scholar 

  2. Vasiliou, V., Pappa, A., & Petersen, D. R. (2000). Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chemico-Biological Interactions, 129(1–2), 1–19.

    Article  CAS  Google Scholar 

  3. Rodríguez-Zavala, J. S., Allali-Hassni, A., & Weiner, H. (2006). Characterization of E. coli tetrameric aldehyde dehydrogenases with atypical properties compared to other aldehyde dehydrogenases. Protein Science, 15(6), 1387–1396.

    Article  Google Scholar 

  4. Shimizu, E., Ichise, H., Odawara, T., & Yorifuji, T. (1993). NADP-dependent phenylacetaldehyde dehydrogenase for degradation of phenylethylamine in Arthrobacter globiformis. Bioscience, Biotechnology, and Biochemistry, 57(5), 852–853.

    Article  CAS  Google Scholar 

  5. Corkery, D. M., O’Connor, K. E., Buckley, C. M., & Dobson, A. D. W. (1994). Ethylbenzene degradation by Pseudomonas fluorescens strain CA-4. FEMS Microbiology Letters, 124(1), 23–27.

    Article  CAS  Google Scholar 

  6. Ferrández, A., Prieto, M. A., García, J. L., & Díaz, E. (1997). Molecular characterization of PadA, a phenylacetaldehyde dehydrogenase from Escherichia coli. FEBS Letters, 406(1–2), 23–27.

    Article  Google Scholar 

  7. Hartmans, S., Smits, J. P., van der Werf, M. J., Volkering, F., & de Bont, J. A. M. (1989). Metabolism of styrene oxide and 2-phenylethanol in the styrene-degrading Xanthobacter strain 124X. Applied and Environmental Microbiology, 55(11), 2850–2855.

    CAS  Google Scholar 

  8. Hartmans, S., Van der Werf, M. J., & de Bont, J. A. M. (1990). Bacterial degradation of styrene involving a novel flavin adenine dinucleotide-dependent styrene monooxygenase. Applied and Environmental Microbiology, 56(5), 1347–1351.

    CAS  Google Scholar 

  9. Parrott, S., Jones, S., & Cooper, R. A. (1987). 2-Phenylethylamine catabolism by Escherichia coli K12. Journal of General Microbiology, 133(2), 347–351.

    CAS  Google Scholar 

  10. Hirano, J.-I., Miyamoto, K., & Ohta, H. (2007). Purification and characterization of aldehyde dehydrogenase with a broad substrate specificity originated from 2-phenylethanol-assimilating Brevibacterium sp. KU1309. Applied Microbiology and Biotechnology, 76(2), 357–363.

    Article  CAS  Google Scholar 

  11. Xu, F. (2005). Applications of oxireductases: recent progress. Industrial Biotechnology, 1(1), 38–50.

    Article  CAS  Google Scholar 

  12. Brichac, J., Ho, K. K., Honzatko, A., Wang, R., Lu, X., Weiner, H., & Picklo, M. J. S. (2007). Enantioselective oxidation of trans-4-hydroxy-2-nonenal is aldehyde dehydrogenase isozyme and Mg2+ dependent. Chemical Research in Toxicology, 20(6), 887–895.

    Article  CAS  Google Scholar 

  13. Oelschlägel, M., Heiland, C., Schlömann, M., & Tischler, D. (2015). Production of a recombinant membrane protein in an Escherichia coli strain for the whole cell biosynthesis of phenylacetic acids. Biotechnology Report, 7, 38–43.

    Article  Google Scholar 

  14. Oelschlägel, M., Kaschabek, S. R., Zimmerling, J., Schlömann, M., & Tischler, D. (2015). Co-metabolic formation of substituted phenylacetic acids by styrene-degrading bacteria. Biotechnol Rep., 6, 20–26.

    Article  Google Scholar 

  15. Carmona, M., Zamarro, M. T., Blázquez, B., Durante-Rodríguez, G., Juárez, J. F., Valderrama, J. A., Barragán, M. J. L., García, J. L., & Díaz, E. (2009). Anaerobic catabolism of aromatic compounds: a genetic and genomic view. Microbiology and Molecular Biology Reviews, 73(1), 71–133.

    Article  CAS  Google Scholar 

  16. Sophos, N. A., & Vasiliou, V. (2003). Aldehyde dehydrogenase gene superfamily: the 2002 update. Chemico-Biological Interactions, 143–144, 5–22.

    Article  Google Scholar 

  17. Chen, A., Ren, L., & Crudden, C. M. (1999). Catalytic asymmetric hydrocarboxylation and hydrohydroxymethylation. A two-step approach to the enantioselective functionalization of vinylarenes. The Journal of Organic Chemistry, 64(26), 9704–9710.

    Article  CAS  Google Scholar 

  18. Corse, J. W., Jones, R. G., Soper, Q. F., Whitehead, C. W., & Behrens, O. K. (1948). Biosynthesis of penicillins. V. Substituted phenylacetic acid derivates as penicillin precursors. Journal of the American Chemical Society, 70(9), 2837–2843.

    Article  CAS  Google Scholar 

  19. Douma, R. D., Deshmukh, A. T., de Jong, B. W., Seifar, R. M., Heijnen, J. J., & van Gulik, W. M. (2012). Novel insights in transport mechanisms and kinetics of phenylacetic acid and penicillin-G in Penicillium chrysogenum. Biotechnology Progress, 28(2), 337–348.

    Article  CAS  Google Scholar 

  20. Ghorai, P., Kraus, A., Keller, M., Götte, C., Igel, P., Schneider, E., Schnell, D., Bernhardt, G., Dove, S., Zabel, M., Elz, S., Seifert, R., & Buschauer, A. (2008). Acylguanidines as bioisosteres of guanidines: NG-acylated imidazolylpropylguanidines, a new class of histamine H2 receptor agonists. Journal of Medicinal Chemistry, 51(22), 7193–7204.

    Article  CAS  Google Scholar 

  21. Gualtieri, F., Conti, G., Dei, S., Giovannoni, M. P., Nannucci, F., Romanelli, M. N., Scapecchi, S., Teodori, E., Fanfani, L., Ghelardini, C., Giotti, A., & Bartolin, A. (1994). Presynaptic cholinergic modulators as potent cognition enhancers and analgesic drugs. 1. Tropic and 2-phenylpropionic acid esters. Journal of Medicinal Chemistry, 37(11), 1704–1711.

    Article  CAS  Google Scholar 

  22. Hamdouchi, C., Sanchez-Martinez, C., Gruber, J., del Prado, M., Lopez, J., Rubio, A., & Heinz, B. A. (2003). Imidazo [1,2-b] pyridazines, novel nucleus with potent and broad spectrum activity against human picornaviruses: design, synthesis, and biological evaluation. Journal of Medicinal Chemistry, 46(20), 4333–4341.

    Article  CAS  Google Scholar 

  23. Jiang, J., DeVita, R. J., Kumar, S., Mills, S. G., & Tschirret-Guth, R. A. (2010). United States Patent, US7683068, Merck Sharp & Dohme Corp., US.

  24. Luo, Y., Li, Y., Qiu, K.-M., Lu, X., Fu, J., & Zhu, H.-L. (2011). Metronidazole acid acyl sulfonamide: a novel class of anticancer agents and potential EGFR tyrosine kinase inhibitors. Bioorganic & Medicinal Chemistry, 19(20), 6069–6076.

    Article  CAS  Google Scholar 

  25. Milne, J. E., Storz, T., Colyer, J. T., Thiel, O. R., Seran, M. D., Larsen, R. D., & Murry, J. A. (2011). Iodide-catalyzed reductions: development of a synthesis of phenylacetic acids. The Journal of Organic Chemistry, 76(22), 9519–9524.

    Article  CAS  Google Scholar 

  26. Pedemonte, N., Sonawane, N. D., Taddei, A., Hu, J., Zegarra-Moran, O., Suen, Y. F., Robins, L. I., Dicus, C. W., Willenbring, D., Nantz, M. H., Kurth, M. J., Galietta, L. J. V., & Verkman, A. S. (2005). Phenylglycine and sulfonamide correctors of defective F508 and G551D cystic fibrosis transmembrane conductance regulator chloride-channel gating. Molecular Pharmacology, 67(5), 1797–1807.

    Article  CAS  Google Scholar 

  27. Pour, M., Spulák, M., Balsánek, V., Kunes, J., Kubanová, P., & Buchta, V. (2003). Synthesis and structure–antifungal activity relationships of 3-aryl-5-alkyl-2,5-dihydrofuran-2-ones and their carbanalogues: further refinement of tentative pharmacophore group. Bioorganic & Medicinal Chemistry, 11(13), 2843–2866.

    Article  CAS  Google Scholar 

  28. Small, R. E. (1989). Diclofenac sodium. Clinical Pharmacy, 8(8), 545–558.

    CAS  Google Scholar 

  29. Wagner, R., Larson, D. P., Beno, D. W. A., Bosse, T. D., Darbyshire, J. F., Gao, Y., Gates, B. D., He, W., Henry, R. F., Hernadez, L. E., Hutchinson, D. K., Jiang, W. W., Kati, W. M., Klein, L. L., Koev, G., Kohlbrenner, W., Krueger, A. C., Liu, J., Liu, Y., Long, M. A., Maring, C. J., Masse, S. V., Middleton, T., Montgomery, D. A., Pratt, J. K., Stuart, P., Molla, A., & Kempf, D. J. (2009). Inhibitors of hepatitis C virus polymerase: synthesis and biological characterization of unsymmetrical dialkyl-hydroxynaphthalenoyl-benzothiadiazines. Journal of Medicinal Chemistry, 52(6), 1659–1669.

    Article  CAS  Google Scholar 

  30. Zhu, Y.-J., Zhou, H.-T., Hu, Y.-H., Tang, J.-Y., Su, M.-X., Guo, Y.-J., Chen, Q.-X., & Liu, B. (2011). Antityrosinase and antimicrobial activities of 2-phenylethanol, 2-phenylacetaldehyde and 2-phenylacetic acid. Food Chemistry, 124(1), 298–302.

    Article  CAS  Google Scholar 

  31. Fahlbusch, K.-G., Hammerschmidt, F.-J., Panten, J., Pickenhagen, W., Schatkowski, D., Bauer, K., Garbe, D., & Surburg, H. (2012). Flavors and fragrances (15th ed.). Weinheim: Wiley-VCH.

    Google Scholar 

  32. Taqui Khan, M. M., Halligudi, S. B., & Abdi, S. H. R. (1988). Carbonylation of benzyl chloride to phenylacetic acid and its ester using water-soluble Ru(III)-EDTA complex catalyst. Journal of Molecular Catalysis, 44(2), 179–181.

    Article  Google Scholar 

  33. Tischler, D., & Kaschabek, S. R. (2012). Microbial degradation of xenobiotics. In S. N. Singh (Ed.), Microbial styrene degradation: from basics to biotechnology (pp. 67–99). Heidelberg: Springer.

    Chapter  Google Scholar 

  34. Arias, S., Olivera, E. R., Arcos, M., Naharro, G., & Luengo, J. M. (2008). Genetic analyses and molecular characterization of the pathways involved in the conversion of 2-phenylethylamine and 2-phenylethanol into phenylacetic acid in Pseudomonas putida U. Environmental Microbiology, 10(2), 413–432.

    Article  CAS  Google Scholar 

  35. Hanlon, S. P., Hill, T. K., Flavell, M. A., Stringfellow, J. M., & Cooper, R. A. (1997). 2-Phenylethylamine catabolism by Escherichia coli K-12: gene organization and expression. Microbiology, 143(2), 513–518.

    Article  CAS  Google Scholar 

  36. Bestetti, G., Di Gennaro, P., Colmegna, A., Ronco, I., Galli, E., & Sello, G. (2004). Characterization of styrene catabolic pathway in Pseudomonas fluorescens ST. International Biodeterioration & Biodegradation, 54(2–3), 183–187.

    Article  CAS  Google Scholar 

  37. Panke, S., Witholt, B., Schmid, A., & Wubbolts, M. G. (1998). Towards a biocatalyst for (S)-styrene oxide production: characterization of the styrene degradation pathway of Pseudomonas sp. strain VLB120. Applied and Environmental Microbiology, 64(6), 2032–2043.

    CAS  Google Scholar 

  38. Beltrametti, F., Marconi, A. M., Bestetti, G., Colombo, C., Galli, E., Ruzzi, M., & Zennaro, E. (1997). Sequencing and functional analysis of styrene catabolism genes from Pseudomonas fluorescens ST. Applied and Environmental Microbiology, 63(6), 2232–2239.

    CAS  Google Scholar 

  39. Marconi, A. M., Beltrametti, F., Bestetti, G., Solinas, F., Ruzzi, M., Galli, E., & Zennaro, E. (1996). Cloning and characterization of styrene catabolism genes from Pseudomonas fluorescens ST. Applied and Environmental Microbiology, 62(1), 121–127.

    CAS  Google Scholar 

  40. Baggi, G., Boga, M. M., Catelani, D., Galli, E., & Treccani, V. (1983). Styrene catabolism by a strain of Pseudomonas fluorescens. Systematic and Applied Microbiology, 4(1), 141–147.

    Article  CAS  Google Scholar 

  41. Cox, H. H. J., Faber, B. W., Van Heiningen, W. N. M., Radhoe, H., Doddema, H. J., & Harder, W. (1996). Styrene metabolism in Exophiala jeanselmei and involvement of a cytochrome P-450-dependent styrene monooxygenase. Applied and Environmental Microbiology, 62(4), 1471–1474.

    CAS  Google Scholar 

  42. Clark, D. P., & Pazdernik, N. J. (2009). Biotechnology (Applying the genetic revolution). Burlington: Elsevier.

    Google Scholar 

  43. Weiner, H., & Hurley, T. D. (2007). NADP+ binding to dehydrogenases. In M. M. Cox and G. N. Philips, Jr. (Eds.), Handbook of proteins, vol. 1 (pp. 626–632). Chichester: Wiley.

  44. Koolman, J., & Röhm, K.-H. (2009). Taschenatlas (Biochemie des Menschen). Stuttgart: Georg Thieme Verlag.

    Google Scholar 

  45. Itoh, N., Hayashi, K., Okada, K., Ito, T., & Mizuguchi, N. (1997). Characterization of styrene oxide isomerase, a key enzyme of styrene and styrene oxide metabolism in Corynebacterium sp. Bioscience, Biotechnology, and Biochemistry, 61(12), 2058–2062.

    Article  CAS  Google Scholar 

  46. O’Connor, K., Buckley, C. M., Hartmans, S., & Dobson, A. D. W. (1995). Possible regulatory role for nonaromatic carbon sources in styrene degradation by Pseudomonas putida CA-3. Applied and Environmental Microbiology, 61(2), 544–548.

    Google Scholar 

  47. Oelschlägel, M., Gröning, J. A. D., Tischler, D., Kaschabek, S., & Schlömann, M. (2012). Styrene oxide isomerase of Rhodococcus opacus 1CP, a highly stable and considerably active enzyme. Applied and Environmental Microbiology, 78(12), 4330–4337.

    Article  Google Scholar 

  48. Tischler, D., Eulberg, D., Lakner, S., Kaschabek, S. R., Van Berkel, W. J. H., & Schlömann, M. (2009). Identification of a novel self-sufficient styrene monooxygenase from Rhodococcus opacus 1CP. Journal of Bacteriology, 191(15), 4996–5009.

    Article  CAS  Google Scholar 

  49. Wilson, K. (1994). Preparation of genomic DNA from bacteria. In: F. M. Ausubel, et al. (Eds.), Current protocols in molecular biology, vol. 3 (pp. 2.4.1–2.4.2). New York: Wiley.

  50. Sambrook, J., & Russell, D. W. (2001). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.

    Google Scholar 

  51. Miyamoto, K., Okuro, K., & Ohta, H. (2007). Substrate specificity and reaction mechanism of recombinant styrene oxide isomerase from Pseudomonas putida S12. Tetrahedron Letters, 48(18), 3255–3257.

    Article  CAS  Google Scholar 

  52. Oelschlägel, M., Zimmerling, J., Schlömann, M., & Tischler, D. (2014). Styrene oxide isomerase of Sphingopyxis sp. Kp5.2. Microbiology, 160(11), 2481–2491.

    Article  Google Scholar 

Download references

Acknowledgments

Juliane Zimmerling and Michel Oelschlägel were supported by fellowships from the Deutsche Bundesstiftung Umwelt and Dirk Tischler by a grant from the European Social Fund and the Saxonian Government (GETGEOWEB: 100101363).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juliane Zimmerling or Dirk Tischler.

Ethics declarations

Conflict of Interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zimmerling, J., Tischler, D., Großmann, C. et al. Characterization of Aldehyde Dehydrogenases Applying an Enzyme Assay with In Situ Formation of Phenylacetaldehydes. Appl Biochem Biotechnol 182, 1095–1107 (2017). https://doi.org/10.1007/s12010-016-2384-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2384-1

Keywords

Navigation