Skip to main content
Log in

Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Bacillus licheniformis TISTR 1010 was used for glutamic acid-independent production of poly-γ-glutamic acid (γ-PGA). A fed-batch production strategy was developed involving feedings of glucose, citric acid, and ammonium chloride at specified stages of the fermentation. With the dissolved oxygen concentration controlled at ≥50% of air saturation and the pH controlled at ~7.4, the fed-batch operation at 37 °C afforded a peak γ-PGA concentration of 39.9 ± 0.3 g L−1 with a productivity of 0.926 ± 0.006 g L−1 h−1. The observed productivity was nearly threefold greater than previously reported for glutamic acid-independent production using the strain TISTR 1010. The molecular weight of γ-PGA was in the approximate range of 60 to 135 kDa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shih, I. L., & Van, Y. T. (2001). The production of poly-(γ-glutamic acid) from microorganisms and its various applications. Bioresource Technology, 79, 207–225.

    Article  CAS  Google Scholar 

  2. Buescher, J. M., & Margaritis, A. (2007). Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Critical Reviews in Biotechnology, 27, 1–19.

    Article  CAS  Google Scholar 

  3. Bajaj, I., & Singhal, R. (2011). Poly (glutamic acid)—an emerging biopolymer of commercial interest. Bioresource Technology, 102, 5551–5561.

    Article  CAS  Google Scholar 

  4. Luo, Z., Guo, Y., Liu, J., Qiu, H., Zhao, M., Zou, W., & Li, S. (2016). Microbial synthesis of poly-γ-glutamic acid: current progress, challenges, and future perspectives. Biotechnology for Biofuels, 9, 134.

    Article  Google Scholar 

  5. Cao, M., Geng, W., Liu, L., Song, C., Xie, H., Guo, W., et al. (2011). Glutamic acid independent production of poly-γ-glutamic acid by Bacillus amyloliquefaciens LL3 and cloning of pgsBCA genes. Bioresource Technology, 102, 4251–4257.

    Article  CAS  Google Scholar 

  6. Shih, I. L., Wu, P. J., & Shieh, C. J. (2005). Microbial production of a poly(γ-glutamic acid) derivative by Bacillus subtilis. Process Biochemistry, 40, 2827–2832.

    Article  CAS  Google Scholar 

  7. Ito, Y., Tanaka, T., Ohmachi, T., & Asada, Y. (1996). Glutamic acid independent production of poly(γ-glutamic acid) by Bacillus subtilis TAM-4. Bioscience, Biotechnology and Biochemistry, 60, 1239–1242.

    Article  CAS  Google Scholar 

  8. Cheng, C., Asada, Y., & Aida, T. (1989). Production of γ-polyglutamic acid by Bacillus licheniformis A35 under denitrifying conditions. Agricultural and Biological Chemistry, 53, 2369–2375.

    CAS  Google Scholar 

  9. Kongklom, N., Luo, H., Shi, Z., Pechyen, C., Chisti, Y., & Sirisansaneeyakul, S. (2015). Production of poly-γ-glutamic acid by glutamic acid-independent Bacillus licheniformis TISTR 1010 using different feeding strategies. Biochemical Engineering Journal, 100, 67–75.

    Article  CAS  Google Scholar 

  10. Ashiuchi, M., Kamei, T., Baek, D. H., Shin, S. Y., Sung, M. H., Soda, K., et al. (2001). Isolation of Bacillus subtilis (chungkookjang), a poly-γ-glutamate producer with high genetic competence. Applied Microbiology and Biotechnology, 57, 764–769.

    Article  CAS  Google Scholar 

  11. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  12. Ashiuchi, M., Soda, K., & Misono, H. (1999). A poly-g-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-γ-glutamate produced by Escherichia coli clone cells. Biochemical and Biophysical Research Communications, 263, 6–12.

    Article  CAS  Google Scholar 

  13. Ademark, P., Varga, A., Medve, J., Harjunpää, V., Torbjörn, D., Tjerneld, F., & Stålbrand, H. (1998). Softwood hemicellulose-degrading enzymes from Aspergillus niger: purification and properties of a β-mannanase. Journal of Biotechnology, 63, 199–210.

    Article  CAS  Google Scholar 

  14. Weatherburn, M. W. (1967). Phenol-hypochlorite reaction for determination of ammonia. Analytical Chemistry, 39, 971–974.

    Article  CAS  Google Scholar 

  15. Kambourova, M., Tangney, M., & Priest, F. G. (2001). Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Applied and Environmental Microbiology, 67, 1004–1007.

    Article  CAS  Google Scholar 

  16. Yamaguchi, F., Ogawa, Y., Kikuchi, M., Yuasa, K., & Motai, H. (1996). Detection of γ-polyglutamic acid (γ-PGA) by SDS-PAGE. Bioscience, Biotechnology and Biochemistry, 60, 225–228.

    Google Scholar 

  17. Ashiuchi, M., Tani, K., Soda, K., & Misono, H. (1998). Properties of glutamate recemase from Bacillus subtilis IFO 3336 producing poly-γ-glutamate. Journal of Biochemistry, 123, 1156–1163.

    Article  CAS  Google Scholar 

  18. Schneerson, R., Kubler-Kielb, J., Liu, T. Y., Dai, Z. D., Leppla, S. H., Yergey, A., Backlund, P., Shiloach, J., Majadly, F., & Robbins, J. B. (2003). Poly(γ-D-glutamic acid) protein conjugates induce IgG antibodies in mice to the capsule of Bacillus anthracis: a potential addition to the anthrax vaccine. Proceedings of the National Academy of Sciences of the USA, 100, 8945–8950

  19. Kubler-Kielb, J., Liu, T. Y., Mocca, C., Majadly, F., Robbins, J. B., & Schneerson, R. (2006). Additional conjugation methods and immunogenicity of Bacillus anthracis poly-g-D-glutamic acid-protein conjugates. Infection and Immunity, 74, 4744–4749.

    Article  CAS  Google Scholar 

  20. Sutherland, M. D., Thorkildson, P., Parks, S. D., & Kozel, T. R. (2008). In vivo fate and distribution of poly-γ-D-glutamic acid, the capsular antigen from Bacillus anthracis. Infection and Immunity, 76, 899–906.

    Article  CAS  Google Scholar 

  21. Ashiuchi, M. (2013). Microbial production and chemical transformation of poly-γ-glutamate. Microbial Biotechnology, 6, 664–674.

    CAS  Google Scholar 

  22. Jang, J., Cho, M., Lee, H. R., Cha, K., Chun, J. H., Hong, K. J., et al. (2013). Monoclonal antibody against the poly-γ-D-glutamic acid capsule of Bacillus anthracis protects mice from enhanced lethal toxin activity due to capsule and anthrax spore challenge. Biochimica et Biophysica Acta, 1830, 2804–2812.

    Article  CAS  Google Scholar 

  23. Zhang, D., Feng, X., Li, S., Chen, F., & Xu, H. (2012). Effects of oxygen vectors on the synthesis and molecular weight of poly(γ-glutamic acid) and the metabolic characterization of Bacillus subtilis NX-2. Process Biochemisty, 47, 2103–2109.

    Article  CAS  Google Scholar 

  24. de Cesaro, A., da Silva, S., & Ayub, M. (2014). Effects of metabolic pathway precursors and polydimethylsiloxane (PDMS) on poly-γ-glutamic acid production by Bacillus subtilis BL53. Journal of Industrial Microbiology and Biotechnology, 41, 1375–1382.

    Article  Google Scholar 

  25. Abdel-Fattah, Y. R., Soliman, N. A., & Berekaa, M. M. (2007). Application of Box–Behnken design for optimization of poly-γ-glutamic acid production by Bacillus licheniformis SAB-26. Research Journal of Microbiology, 2, 664–670.

    Article  CAS  Google Scholar 

  26. Jeong, J. H., Kim, J. N., Weeb, Y. J., & Ryu, H. W. (2010). The statistically optimized production of poly(gamma-glutamic acid) by batch fermentation of a newly isolated Bacillus subtilis RKY3. Bioresource Technology, 101, 4533–4539.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Department of Biotechnology, Faculty of Agro-Industry, Kasetsart University, and the Higher Education Research Promotion and National Research University Project of Thailand, Office of the Higher Education Commission.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarote Sirisansaneeyakul.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kongklom, N., Shi, Z., Chisti, Y. et al. Enhanced Production of Poly-γ-glutamic Acid by Bacillus licheniformis TISTR 1010 with Environmental Controls. Appl Biochem Biotechnol 182, 990–999 (2017). https://doi.org/10.1007/s12010-016-2376-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2376-1

Keywords

Navigation