Skip to main content

Advertisement

Log in

Photodynamic Inactivation of E. coli PTCC 1276 Using Light Emitting Diodes: Application of Rose Bengal and Methylene Blue as Two Simple Models

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The lack of a comparative study about potential of high-power light emitting diodes (LEDs) for photodynamic inactivation (PDI) of pathogenic microorganisms has remained as a challenging issue for researchers. Therefore, the aim of this study is to fill this gap through introduction of an efficient model for in vitro PDI in an aqueous medium. For this purpose, two individual 30 mW/cm2 irradiation systems were designed using suitable sets of green and red LEDs. At another work, Methylene blue (MB) and Rose bengal (RB) as two simple models in the range of 5–150 μM were used in order to compare PDI of E. coli PTCC 1276 using red and green LED systems. Our results showed that a first-order mathematical model has the strength to describe the temporal variation of survival curves. Based on our results, when concentration of photosensitizer increased, the rate of inactivation for RB increased while MB depicted a maximum rate value at 25 μM. In a comparative study, optimum inactivation of E. coli PTCC 1276 obtained during 2- and 10-min irradiation of the LED systems using RB and MB at 150 and 25 μM, respectively. With regard to lower value of inactivation time and higher rate of inactivation for RB, use of simultaneous green high-power LEDs and RB is proposed as an efficient approach for PDI of pathogenic bacteria in future industrial applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kerwick, M., Holt, R. S., & Chamberlain, A. (2005). A methodology for the evaluation of disinfection technologies. Journal of Water and Health, 3(4), 393–404.

    Article  CAS  Google Scholar 

  2. Singer, P.C., Weinberg, H.S., & Brophy, K. (2002). Relative dominance of haloacetic acids and trihalomethanes in treated drinking water. American Water Works Association.

  3. Gerba, C.P., Wallis, C., & Melnick, J.L. (1977). Disinfection of wastewater by photodynamic oxidation. Journal of Water Pollution Control Federation, 49, 575–583.

  4. Alves, E., Fustino, M. A. F., Neves, M. G. P. M. S., Cunha, A., Nadais, H., & Almeida, A. (2015). Potential applications of porphyrins in photodynamic inactivation beyond the medical scope. Journal of Photochemistry and Photobiology C: Photochemistry Reviews., 22, 34–57.

    Article  CAS  Google Scholar 

  5. Alves, E., Fustino, M. A. F., Tomé, J. P. C., Neves, M. G. P. M. S., Tomé, A. C., Cavaleiro, J. A. S., Cunha, A., Gomes, N. C. M., & Almeida, A. (2011). Photodynamic antimicrobial chemotherapy in aquaculture: photoinactivation studies of Vibrio Fischeri. PloS One, 6(6), 1–9.

    Article  Google Scholar 

  6. Alves, E., Rodrigues, J. M. M., Faustino, M. A. F., Neves, M. G. P. M. S., Cavaleiro, J. A. S., Lin, Z., Cunha, A., Nadais, M. H., Tomé, J. P. C., & Almeida, A. (2014). A new insight on nanomagnet–porphyrin hybrids for photodynamic inactivation of microorganisms. Dyes and Pigments., 110, 80–88.

    Article  CAS  Google Scholar 

  7. Soria-Lozano, P., Gilaberte, Y., Paz-Cristobal, M. P., Pérez-Artiaga, L., Lampaya-Pérez, V., Aporta, J., Pérez-Laguna, V., García-Luque, I., Revillo, M. J., & Rezusta, A. (2015). In vitro effect photodynamic therapy with differents photosensitizers on cariogenic microorganisms. BMC microbiology., 15, 1–8.

    Article  Google Scholar 

  8. Peloi, L. S., Soares, R. R., Biondo, C. E., Souza, V. R., Hioka, N., & Kimura, E. (2008). Photodynamic effect of light-emitting diode light on cell growth inhibition induced by methylene blue. Journal of biosciences., 33(2), 231–237.

    Article  CAS  Google Scholar 

  9. Souza, R.C., Junqueira,J.C., Rossoni, R.D., Pereira, C.A., Munin, E., & Jorge, A.O. (2010). Comparison of the photodynamic fungicidal efficacy of methylene blue, toluidine blue, malachite green and low-power laser irradiation alone against Candida albicans. Lasers in medical science. 25(3), 385–389.

  10. de Souza, S. C., Junqueira, J. C., Balducci, I., Koga-Ito, C. Y., Munin, E., & Jorge, A. O. (2006). Photosensitization of different Candida species by low power laser light. Journal of Photochemistry and Photobiology B: Biology., 83(1), 34–38.

    Article  Google Scholar 

  11. Munin, E., Giroldo, L. M., Alves, L. P., & Costa, M. S. (2007). Study of germ tube formation by Candida albicans after photodynamic antimicrobial chemotherapy (PACT). Journal of Photochemistry and Photobiology B: Biology., 88(1), 16–20.

    Article  CAS  Google Scholar 

  12. Costa, A. C., Rasteiro, V. M., Pereira, C. A., Rossoni, R. D., Junqueira, J. C., & Jorge, A. O. (2012). The effects of rose bengal and erythrosine mediated photodynamic therapy on Candida albicans. Mycoses, 55(1), 56–63.

    Article  CAS  Google Scholar 

  13. Chui, C., Aoki, A., Takeuchi, Y., Sasaki, Y., Hiratsuka, K., Abiko, Y.,& Izumi, Y. (2013). Antimicrobial effect of photodynamic therapy using high power blue light emitting diode and red dye agent on Porphyromonas gingivalis. Journal of periodontal research. 48(6), 696–705.

  14. Bolean, M., Paulino, T. P., Thedei Jr., G., & Ciancaglini, P. (2010). Photodynamic therapy with rose bengal induces GroEL expression in Streptococcus mutans. Photomedicine and laser surgery., 28, 79–84.

    Article  Google Scholar 

  15. Freire, F., Costa, A. C., Pereira, C. A., Beltrame Junior, M., Junqueira, J. C., & Jorge, A. O. (2014). Comparison of the effect of rose bengal-and eosin Y-mediated photodynamic inactivation on planktonic cells and biofilms of Candida albicans. Lasers in medical science., 29(3), 949–955.

    Article  Google Scholar 

  16. Guo, Y., Rogelj, S., & Zhang, P. (2010). Rose Bengal-decorated silica nanoparticles as photosensitizers for inactivation of gram-positive bacteria. Nanotechnology, 21(6), 1–7.

    Article  CAS  Google Scholar 

  17. Hino, H., Murayama, Y., Nakanishi, M., Inoue, K., Nakajima, M., & Otsuji, E. (2013). 5-Aminolevulinic acid-mediated photodynamic therapy using light-emitting diodes of different wavelengths in a mouse model of peritoneally disseminated gastric cancer. Journal of surgical research., 185(1), 119–126.

    Article  CAS  Google Scholar 

  18. Chen, D., Zheng, H., Huang, Z., Lin, H., Ke, Z., Xie, S., & Li, B. (2012). Light-emitting diode-based illumination system for in vitro photodynamic therapy. International Journal of Photoenergy., 2012, 1–6.

    Google Scholar 

  19. Maclean, M., MacGregor, S. J., Anderson, J. G., & Woolsey, G. (2009). Inactivation of bacterial pathogens following exposure to light from a 405-nanometer light-emitting diode array. Applied and environmental microbiology., 75(7), 1932–1937.

    Article  CAS  Google Scholar 

  20. Rossoni, R. D., Vilela, S. F. G., Forte, L. F. B. P., Jorge, A. O. C., & Junqueira, J. C. (2009). Photoinactivation of Escherichia coli using xanthene dyes andlight-emitting diodes. Brazilian dental science., 12(4), 6–11.

    Google Scholar 

  21. Hale, G. M., & Querry, M. R. (1973). Optical constants of water in the 200-nm to 200-μm wavelength region. Applied optics., 12(3), 555–563.

    Article  CAS  Google Scholar 

  22. Tardivo, J. P., Giglio, A. D., de Oliveira, C. S., Gabrielli, D. S., Junqueira, H. C., Tada, D. B., Severino, D., de Fátima Turchiello, R., & Baptista (2005). Methylene blue in photodynamic therapy: from basic mechanisms to clinical applications. Photodiagnosis and Photodynamic Therapy., 2(3), 175–191.

    Article  CAS  Google Scholar 

  23. Engbersen, J., Koudijs, A., & Van der Plas, H. (1985). Reaction of NADH models with methylene blue. Recueil des Travaux Chimiques des Pays-Bas., 104(5), 131–138.

    Article  CAS  Google Scholar 

  24. Ergaieg, K., & Seux, R. (2009). A comparative study of the photoinactivation of bacteria by meso-substituted cationic porphyrin, rose Bengal and methylene blue. Desalination, 246(1), 353–362.

    Article  CAS  Google Scholar 

  25. Peleg, M. (2003). Microbial survival curves: interpretation, mathematical modeling, and utilization. Comments® on Theoretical. Biology, 8, 357–387.

    Google Scholar 

  26. Wainwright, M. (1998). Photodynamic antimicrobial chemotherapy (PACT). Journal of antimicrobial chemotherapy., 42(1), 13–28.

    Article  CAS  Google Scholar 

  27. Kawanishi, S., Hiraku, Y., & Oikawa, S. (2001). Mechanism of guanine-specific DNA damage by oxidative stress and its role in carcinogenesis and aging. Mutation Research/Reviews in Mutation Research., 488(1), 65–76.

    Article  CAS  Google Scholar 

  28. Schafer, M. (1998). High sensitivity of Deinococcus radiodurans to photodynamically-produced singlet oxygen. International journal of radiation biology., 74(2), 249–253.

    Article  CAS  Google Scholar 

  29. Davies, M. J., & Truscott, R. J. (2001). Photo-oxidation of proteins and its role in cataractogenesis. Journal of Photochemistry and Photobiology B: Biology., 63(1), 114–125.

    Article  CAS  Google Scholar 

  30. Niemz, M.H. (2013). Laser-tissue interactions: fundamentals and applications, Springer Science & Business Media Publishing.

  31. Li, B., Lin, L., Lin, H., & Wilson, B. C. (2016). Photosensitized singlet oxygen generation and detection: recent advances and future perspectives in cancer photodynamic therapy. Journal of Biophotonics. doi:10.1002/jbio.201600055.

    Google Scholar 

  32. Lin, H., Shen, Y., Chen, D., Lin, L., Wilson, B. C., Li, B., & Xie, S. (2013). Feasibility study on quantitative measurements of singlet oxygen generation using singlet oxygen sensor green. Journal of Fluorescence, 23(1), 41–47.

    Article  CAS  Google Scholar 

  33. Neary, M., Quijano, M.. (2009). Solid state lighting for industrial locations. In Petroleum and Chemical Industry Conference, 56th Annual. IEEE.

  34. Nomoto, R., McCabe, J., & Hirano, S. (2003). Comparison of halogen, plasma and LED curing units. Operative dentistry., 29(3), 287–294.

    Google Scholar 

  35. Schubert, E. F., & Kim, J. K. (2005). Solid-state light sources getting smart. Science, 308, 1274–1278.

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors would like to thank the Nejadgholi and Alizadeh foundation for their financial supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hasan Kariminezhad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kariminezhad, H., Amani, H., Khanbabaie, R. et al. Photodynamic Inactivation of E. coli PTCC 1276 Using Light Emitting Diodes: Application of Rose Bengal and Methylene Blue as Two Simple Models. Appl Biochem Biotechnol 182, 967–977 (2017). https://doi.org/10.1007/s12010-016-2374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2374-3

Keywords

Navigation