Skip to main content
Log in

Semi-Rational Engineering of Leucine Dehydrogenase for L-2-Aminobutyric Acid Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

L-2-aminobutyric acid (L-ABA) as a precursor for the anticonvulsant and the antituberculotic is a key intermediate in the chemical and pharmaceutical industries. Recently, leucine dehydrogenase (LeuDH) with NAD+ regeneration was developed for L-ABA production on a large scale. Previously, the L-ABA yield was improved by optimizing conversion conditions, including cofactor regeneration and enzyme immobilization but not protein engineering on LeuDH due to lacking an applicable high-throughput screening (HTS) method. Recently, an HTS assay was developed by us, which enables researchers to engineer LeuDH in a relatively short period of time. Herein, a semirational engineering was performed on LeuDH to increase the catalytic efficiency of BcLeuDH. Firstly, the structure of wild-type (WT) BcLeuDH was modeled and seven potentially beneficial positions were selected for mutation. Five beneficial variants were then identified from the seven site-saturation mutagenesis (SSM) libraries by HTS and confirmed by rescreening via amino acid analyzer. The “best” variant M5 (WT + Q358N) showed 44.5-fold higher catalytic efficiency (k cat/K M) than BcLeuDH WT, which suggested that BcLeuDH M5 is an attractive candidate for L-ABA production on a large scale. Furthermore, the structure-functional relationship was investigated based on the docking and kinetic results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Zhu, L., Tao, R. S., Wang, Y., Jiang, Y., Lin, X., Yang, Y. L., Zheng, H. B., Jiang, W. H., & Yang, S. (2011). Removal of l-alanine from the production of l-2-aminobutyric acid by introduction of alanine racemase and D-amino acid oxidase. Applied Microbiology and Biotechnology, 90, 903–910.

    Article  CAS  Google Scholar 

  2. Fotheringham, I. G., Grinter, N., Pantaleone, D. P., Senkpeil, R. F., & Taylor, P. P. (1999). Engineering of a novel biochemical pathway for the biosynthesis of L-2-aminobutyric acid in Escherichia coli K12. Bioorganic & Medicinal Chemistry, 7, 2209–2213.

    Article  CAS  Google Scholar 

  3. Tao, R. S., Jiang, Y., Zhu, F. Y., & Yang, S. (2013). A one-pot system for production of L-2-aminobutyric acid from L-threonine by L-threonine deaminase and a NADH-regeneration system based on L-leucine dehydrogenase and formate dehydrogenase. Biotechnology Letters., 36, 1–7.

    Google Scholar 

  4. Xu, G., Jiang, Y., Tao, R. S., Wang, S. F., Zeng, H. Y., & Yang, S. (2016). A recyclable biotransformation system for l-2-aminobutyric acid production based on immobilized enzyme technology. Biotechnology Letters, 38, 123–129.

    Article  CAS  Google Scholar 

  5. Zhu, W., Li, Y., Jia, H., Wei, P., Zhou, H., & Jiang, M. (2016). Expression, purification and characterization of a thermostable leucine dehydrogenase from the halophilic thermophile Laceyella sacchari. Biotechnology Letters, 38, 855–861.

    Article  CAS  Google Scholar 

  6. Cheng, F., Zhu, L., & Schwaneberg, U. (2015). Directed evolution 2.0: improving and deciphering enzyme properties. Chemical Communications, 51, 9760–9672.

    Article  CAS  Google Scholar 

  7. Jamil, S., Liu, M. H., Liu, Y. M., Han, R. Z., Xu, G. C., & Ni, Y. (2015). Hydrophobic mutagenesis and semi-rational engineering of arginine deiminase for markedly enhanced stability and catalytic efficiency. Applied Biochemistry & Biotechnology, 176, 1335–1350.

    Article  CAS  Google Scholar 

  8. Xu, J. M., Fu, F. T., Hu, H. F., & Zheng, Y. G. (2016). A high-throughput screening method for amino acid dehydrogenase. Analytical Biochemistry, 495, 29–31.

    Article  CAS  Google Scholar 

  9. Baker, P. J., Turnbull, A. P., Sedelnikova, S. E., Stillman, T. J., & Rice, D. W. (1995). A role for quaternary structure in the substrate-specificity of leucine dehydrogenase. Structure, 3, 693–705.

    Article  CAS  Google Scholar 

  10. Zhao, Y., Wakamatsu, T., Doi, K., Sakuraba, H., & Ohshima, T. A. (2012). Psychrophilic leucine dehydrogenase from Sporosarcina psychrophila: purification, characterization, gene sequencing and crystal structure analysis. Journal of Molecular Catalysis B: Enzymatic, 83, 65–72.

    Article  CAS  Google Scholar 

  11. Arnold, K., Bordoli, L., Kopp, J., & Schwede, T. (2006). The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics, 22, 195–201.

    Article  CAS  Google Scholar 

  12. Larkin, M. A., Blackshields, G., Brown, N. P., Chenna, R., McGettigan, P. A., McWilliam, H., Valentin, F., Wallace, I. M., Wilm, A., Lopez, R., Thompson, J. D., Gibson, T. J., & Higgins, D. G. (2007). Clustal W and Clustal X version 2.0. Bioinformatics, 23, 2947–2948.

    Article  CAS  Google Scholar 

  13. Cheng, F., Zhu, L., Lue, H., Bernhagen, J., & Schwaneberg, U. (2015). Directed arginine deiminase evolution for efficient inhibition of arginine-auxotrophic melanomas. Applied Microbiology and Biotechnology, 99, 1237–1247.

    Article  CAS  Google Scholar 

  14. Liu, Z. Q., Baker, P. J., Cheng, F., Xue, Y. P., Zheng, Y. G., & Shen, Y. C. (2013). Screening and improving the recombinant nitrilases and application in biotransformation of iminodiacetonitrile to iminodiacetic acid. PloS One, 8, e67197.

    Article  CAS  Google Scholar 

  15. Nagata, S., Bakthavatsalam, S., Galkin, A. G., Asada, H., Sakai, S., Esaki, N., Soda, K., Ohshima, T., Nagasaki, S., & Misono, H. (1995). Gene cloning, purification, and characterization of thermostable and halophilic leucine dehydrogenase from a halophilic thermophile, Bacillus licheniformis TSN9. Applied Microbiology & Biotechnology, 44, 432–438.

    Article  CAS  Google Scholar 

  16. Li, H. M., Zhu, D. M., Hyatt, B. A., Malik, F. M., Biehl, E. R., & Hua, L. (2009). Cloning, protein sequence clarification, and substrate specificity of a leucine dehydrogenase from Bacillus sphaericus ATCC4525. Applied Biochemistry & Biotechnology, 158, 343–351.

    Article  CAS  Google Scholar 

  17. Ohshima, T., Misono, H., & Soda, K. (1978). Properties of crystalline leucine dehydrogenase from Bacillus sphaericus. Journal of Biological Chemistry, 253, 5719–5725.

    CAS  Google Scholar 

  18. Ohshima, T., Nishida, N., Bakthavatsalam, S., Kataoka, K., Takada, H., Yoshimura, T., Esaki, N., & Soda, K. (1994). The purification, characterization, cloning and sequencing of the gene for a halostable and thermostable leucine dehydrogenase from Thermoactinomyces intermedius. European Journal of Biochemistry, 222, 305–312.

    Article  CAS  Google Scholar 

  19. Shimoi, H., Nagata, S., Esaki, N., Tanaka, H., & Soda, K. (1987). Leucine dehydrogenase of a thermophilic anaerobe, Clostridium thermoaceticum: gene cloning, purification and characterization. Agricultural & Biological Chemistry, 51, 3375–3381.

    CAS  Google Scholar 

  20. Kärst, U., Schütte, H., Baydoun, H., & Tsai, H. (2004). Purification and characterization of leucine dehydrogenase from the thermophile ‘Bacillus caldolyticus’. Acta Polymerica Sinica, 37, 684–687.

    Google Scholar 

  21. Li, H., Zhu, D., Hyatt, B. A., Malik, F. M., Biehl, E. R., & Hua, L. (2009). Cloning, protein sequence clarification, and substrate specificity of a leucine dehydrogenase from Bacillus sphaericus ATCC4525. Applied Biochemistry & Biotechnology, 158, 343–351.

    Article  CAS  Google Scholar 

  22. Schymkowitz, J., Borg, J., Stricher, F., Nys, R., Rousseau, F., & Serrano, L. (2005). The FoldX web server: an online force field. Nucleic Acids Research, 33, W382–W388.

    Article  CAS  Google Scholar 

  23. Katoh, R., Nagata, S., & Misono, H. (2003). Cloning and sequencing of the leucine dehydrogenase gene from Bacillus sphaericus IFO 3525 and importance of the C-terminal region for the enzyme activity. Journal of Molecular Catalysis B: Enzymatic, 23, 239–247.

    Article  CAS  Google Scholar 

  24. Zhu, L., Cheng, F., Piatkowski, V., & Schwaneberg, U. (2014). Protein engineering of the antitumor enzyme PpADI for improved thermal resistance. Chembiochem, 15, 276–283.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Major Scientific and Technological Special Project for “Significant Scientific Instrument and Equipment Development” (2012YQ15008713), the Zhejiang Provincial Natural Science Foundation of China (Q17C050006), and for Zhejiang Provincial Public Welfare Technology Application Research Projects (2017C33157).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-Guo Zheng.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, JM., Cheng, F., Fu, FT. et al. Semi-Rational Engineering of Leucine Dehydrogenase for L-2-Aminobutyric Acid Production. Appl Biochem Biotechnol 182, 898–909 (2017). https://doi.org/10.1007/s12010-016-2369-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2369-0

Keywords

Navigation