Skip to main content
Log in

Nitrosative Stress Response in Vibrio cholerae: Role of S-Nitrosoglutathione Reductase

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Vibrio cholerae, the causative agent of cholera, poses serious threats to humans worldwide. V. cholerae faces host inflammatory response and encounters nitrosative stress before establishing successful colonization. It is not clear how V. cholerae combats nitric oxide and reactive nitrogen species. In the present study, we used three clinical strains of V. cholerae and tested their nitrosative stress response pattern towards sodium nitroprusside (SNP) and S-Nitrosoglutathione (GSNO). Among them, V. cholerae, belonging to both O1 and O139 serotypes, showed moderate resistance to SNP and GSNO. However, a V. cholerae strain belonging to non O1 and non O139 showed sensitivity to SNP but resistance towards GSNO. Reduced glutathione and glutathione reductase play a significant role to combat nitrosative stress in V. cholerae. This is the first report where we show the presence of GSNO reductase activity in V. cholerae and that it plays an important role to detoxify S-Nitrosoglutathione. GSNO reductase activity of V. cholerae was regulated by posttranslational modification through S-nitrosylation under in vitro conditions which could be reversed by dithiothreitol (DTT). In addition, we show that biofilm formation remained unaffected under nitrosative stress in V. cholerae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  1. Ramamurthy, T., Bag, P. K., Pal, A., Bhattacharya, S. K., Bhattacharya, M. K., Shimada, T., Takeda, T., Karasawa, T., Kurazono, H., Takeda, Y., et al. (1993). Virulence patterns of Vibrio cholerae non-O1 strains isolated from hospitalised patients with acute diarrhoea in Calcutta, India. Journal of Medical Microbiology, 39, 310–317.

    Article  CAS  Google Scholar 

  2. Kaper, J. B., Morris Jr., J. G., & Levine, M. M. (1995). Cholera. Clinical Microbiology Reviews, 8, 48–86.

    CAS  Google Scholar 

  3. Rothenbacher, F. P., & Zhu, J. (2014). Efficient responses to host and bacterial signals during Vibrio cholerae colonization. Gut Microbes, 5, 120–128.

    Article  Google Scholar 

  4. Carpenter, A. W., & Schoenfisch, M. H. (2012). Nitric oxide release: part II. Therapeutic applications. Chemical Society Reviews, 41, 3742–3752.

    Article  CAS  Google Scholar 

  5. Schairer, D. O., Chouake, J. S., Nosanchuk, J. D., & Friedman, A. J. (2012). The potential of nitric oxide releasing therapies as antimicrobial agents. Virulence, 3, 271–279.

    Article  Google Scholar 

  6. D'Autreaux, B., Touati, D., Bersch, B., Latour, J. M., & Michaud-Soret, I. (2002). Direct inhibition by nitric oxide of the transcriptional ferric uptake regulation protein via nitrosylation of the iron. Proceedings of the National Academy of Sciences of the United States of America, 99, 16619–16624.

    Article  Google Scholar 

  7. Keszler, A., Zhang, Y., & Hogg, N. (2010). Reaction between nitric oxide, glutathione, and oxygen in the presence and absence of protein: how are S-nitrosothiols formed? Free Radical Biology & Medicine, 48, 55–64.

    Article  CAS  Google Scholar 

  8. Gardner, P. R., Costantino, G., Szabo, C., & Salzman, A. L. (1997). Nitric oxide sensitivity of the aconitases. The Journal of Biological Chemistry, 272, 25071–25076.

    Article  CAS  Google Scholar 

  9. Kow, Y. W. (2002). Repair of deaminated bases in DNA. Free Radical Biology & Medicine, 33, 886–893.

    Article  CAS  Google Scholar 

  10. Reiter, C. D., Teng, R. J., & Beckman, J. S. (2000). Superoxide reacts with nitric oxide to nitrate tyrosine at physiological pH via peroxynitrite. The Journal of Biological Chemistry, 275, 32460–32466.

    Article  CAS  Google Scholar 

  11. Sahoo, R., Dutta, T., Das, A., Sinha Ray, S., Sengupta, R., & Ghosh, S. (2006). Effect of nitrosative stress on Schizosaccharomyces pombe: inactivation of glutathione reductase by peroxynitrite. Free Radical Biology & Medicine, 40, 625–631.

    Article  CAS  Google Scholar 

  12. Janoff, E. N., Hayakawa, H., Taylor, D. N., Fasching, C. E., Kenner, J. R., Jaimes, E., & Raij, L. (1997). Nitric oxide production during Vibrio cholerae infection. The American Journal of Physiology, 273, G1160–G1167.

    CAS  Google Scholar 

  13. Qadri, F., Raqib, R., Ahmed, F., Rahman, T., Wenneras, C., Das, S. K., Alam, N. H., Mathan, M. M., & Svennerholm, A. M. (2002). Increased levels of inflammatory mediators in children and adults infected with Vibrio cholerae O1 and O139. Clinical and Diagnostic Laboratory Immunology, 9, 221–229.

    CAS  Google Scholar 

  14. Rabbani, G. H., Islam, S., Chowdhury, A. K., Mitra, A. K., Miller, M. J., & Fuchs, G. (2001). Increased nitrite and nitrate concentrations in sera and urine of patients with cholera or shigellosis. The American Journal of Gastroenterology, 96, 467–472.

    Article  CAS  Google Scholar 

  15. Stern, A. M., Hay, A. J., Liu, Z., Desland, F. A., Zhang, J., Zhong, Z., & Zhu, J. (2012). The NorR regulon is critical for Vibrio cholerae resistance to nitric oxide and sustained colonization of the intestines. MBio, 3, e00013–e00012.

    Article  CAS  Google Scholar 

  16. Hart, T. W. (1985). Some observations concerning the S-nitroso and S-phenylsulphonyl derivatives of L-cysteine and glutathione. Tetrahedron Letters, 26, 2013–2016.

    Article  CAS  Google Scholar 

  17. Akerboom, T. P., & Sies, H. (1981). Assay of glutathione, glutathione disulfide, and glutathione mixed disulfides in biological samples. Methods in Enzymology, 77, 373–382.

    Article  CAS  Google Scholar 

  18. Liu, L., Hausladen, A., Zeng, M., Que, L., Heitman, J., & Stamler, J. S. (2001). A metabolic enzyme for S-nitrosothiol conserved from bacteria to humans. Nature, 410, 490–494.

    Article  CAS  Google Scholar 

  19. Carlberg, I., & Mannervik, B. (1975). Purification and characterization of the flavoenzyme glutathione reductase from rat liver. The Journal of Biological Chemistry, 250, 5475–5480.

    CAS  Google Scholar 

  20. Hess, D. T., Matsumoto, A., Kim, S. O., Marshall, H. E., & Stamler, J. S. (2005). Protein S-nitrosylation: purview and parameters. Nature Reviews. Molecular Cell Biology, 6, 150–166.

    Article  CAS  Google Scholar 

  21. O’Toole, G. A. (2011) Microtiter dish biofilm formation assay. J Vis Exp.

  22. Stevanin, T. M., Moir, J. W., & Read, R. C. (2005). Nitric oxide detoxification systems enhance survival of Neisseria meningitidis in human macrophages and in nasopharyngeal mucosa. Infection and Immunity, 73, 3322–3329.

    Article  CAS  Google Scholar 

  23. Stevanin, T. M., Poole, R. K., Demoncheaux, E. A., & Read, R. C. (2002). Flavohemoglobin Hmp protects Salmonella enterica serovar Typhimurium from nitric oxide-related killing by human macrophages. Infection and Immunity, 70, 4399–4405.

    Article  CAS  Google Scholar 

  24. Frey, A. D., Farres, J., Bollinger, C. J., & Kallio, P. T. (2002). Bacterial hemoglobins and flavohemoglobins for alleviation of nitrosative stress in Escherichia coli. Applied and Environmental Microbiology, 68, 4835–4840.

    Article  CAS  Google Scholar 

  25. Dutta, D., Chowdhury, G., Pazhani, G. P., Guin, S., Dutta, S., Ghosh, S., Rajendran, K., Nandy, R. K., Mukhopadhyay, A. K., Bhattacharya, M. K., Mitra, U., Takeda, Y., Nair, G. B., & Ramamurthy, T. (2013). Vibrio cholerae non-O1, non-O139 serogroups and cholera-like diarrhea, Kolkata, India. Emerging Infectious Diseases, 19, 464–467.

    Article  Google Scholar 

  26. Bag, P. K., Bhowmik, P., Hajra, T. K., Ramamurthy, T., Sarkar, P., Majumder, M., Chowdhury, G., & Das, S. C. (2008). Putative virulence traits and pathogenicity of Vibrio cholerae non-O1, non-O139 isolates from surface waters in Kolkata, India. Applied and Environmental Microbiology, 74, 5635–5644.

    Article  CAS  Google Scholar 

  27. Guerra, D., Ballard, K., Truebridge, I., & Vierling, E. (2016). S-nitrosation of conserved cysteines modulates activity and stability of S-Nitrosoglutathione reductase (GSNOR). Biochemistry, 55, 2452–2464.

    Article  CAS  Google Scholar 

  28. Mukhopadhyay, P., Zheng, M., Bedzyk, L. A., LaRossa, R. A., & Storz, G. (2004). Prominent roles of the NorR and Fur regulators in the Escherichia coli transcriptional response to reactive nitrogen species. Proceedings of the National Academy of Sciences of the United States of America, 101, 745–750.

    Article  CAS  Google Scholar 

  29. Ding, H., & Demple, B. (2000). Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proceedings of the National Academy of Sciences of the United States of America, 97, 5146–5150.

    Article  CAS  Google Scholar 

  30. Lee, J. H., Lee, K. L., Yeo, W. S., Park, S. J., & Roe, J. H. (2009). SoxRS-mediated lipopolysaccharide modification enhances resistance against multiple drugs in Escherichia coli. Journal of Bacteriology, 191, 4441–4450.

    Article  CAS  Google Scholar 

  31. Lee, P. E., Demple, B., & Barton, J. K. (2009). DNA-mediated redox signaling for transcriptional activation of SoxR. Proceedings of the National Academy of Sciences of the United States of America, 106, 13164–13168.

    Article  CAS  Google Scholar 

  32. Husain, M., Jones-Carson, J., Song, M., McCollister, B. D., Bourret, T. J., & Vazquez-Torres, A. (2010). Redox sensor SsrB Cys203 enhances Salmonella fitness against nitric oxide generated in the host immune response to oral infection. Proceedings of the National Academy of Sciences of the United States of America, 107, 14396–14401.

    Article  CAS  Google Scholar 

  33. Hausladen, A., Privalle, C. T., Keng, T., DeAngelo, J., & Stamler, J. S. (1996). Nitrosative stress: activation of the transcription factor OxyR. Cell, 86, 719–729.

    Article  CAS  Google Scholar 

  34. Camargo, A. C., de Paula, O. A., Todorov, S. D., & Nero, L. A. (2016). In vitro evaluation of Bacteriocins activity against Listeria monocytogenes biofilm formation. Applied Biochemistry and Biotechnology, 178, 1239–1251.

    Article  CAS  Google Scholar 

  35. Ezzine, A., Moussaoui, M., El Hammi, E., Marzouki, M. N., & Baciou, L. (2014). Antimicrobial agents act differently on Staphyloccocus aureus and Ralstonia eutropha flavohemoglobins. Applied Biochemistry and Biotechnology, 173, 1023–1037.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank DBT, DBT-IPLS, UPE, and UGC CAS Phase II Government of India, CU-CRNN for providing infrastructural facility, DBT, Government of India for providing fellowship to Sourav Kumar Patra. We thank Mr. Chinmay Saha for his assistance in preparing the sequence alignment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay Ghosh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patra, S.K., Bag, P.K. & Ghosh, S. Nitrosative Stress Response in Vibrio cholerae: Role of S-Nitrosoglutathione Reductase. Appl Biochem Biotechnol 182, 871–884 (2017). https://doi.org/10.1007/s12010-016-2367-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2367-2

Keywords

Navigation