Skip to main content
Log in

Structure Characterization and Lead Detoxification Effect of Carboxymethylated Melanin Derived from Lachnum Sp.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, an intracellular melanin, named LIM205, was separated from Lachnum YM205 mycelia and was purified on a Sephadex G-15 column. The molecular weight of LIM205 was determined as 522 Da, and its molecular formula was speculated as C28H14N2O7S. The possible chemical structure of LIM205 was determined according to the results of Fourier transform infrared (FT-IR), 1H NMR, 13C NMR, and pyrolysis/GC-MS analysis. With the aim to increase its water solubility, its carboxymethylated derivative, named CLIM205, was formed by the substitution of hydrogen atoms in LIM205 with one, two, and three carboxymethylate groups. FT-IR, UV, and ESI-MS analysis demonstrated that the carboxymethylate groups were conjugated onto LIM205. The lead detoxification activities of LIM205 and CLIM205 had also been investigated. In vivo test showed that both LIM205 and CLIM205 reduced the tissue lead concentration, enhanced lead excretion, and reversed lead-induced alterations in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) concentrations in mice, with CLIM205 showed better efficacy. The study indicates that LIM205 and CLIM205 have significant lead detoxification effect which will contribute to solve related problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Mandal, M., Das, T., Grewal, B. K., & Ghosh, D. (2015). Feasibility of ionization-mediated pathway for ultraviolet-induced melanin damage. Journal of Physical Chemistry B, 119(42), 13288–13293.

    Article  CAS  Google Scholar 

  2. Song, S., Yang, L., Ye, M., Chen, X., Shi, F., & Shaikh, F. (2016). Antioxidant activity of a Lachnum YM226 melanin-iron complex and its influence on cytokine production in mice with iron deficiency anemia. Food & Function, 7(3), 1508–1514.

    Article  CAS  Google Scholar 

  3. Zhang, M., Xiao, G. N., Thring, T. W., Chen, W., Zhou, H. B., & Yang, H. L. (2015). Production and characterization of melanin by submerged culture of culinary and medicinal fungi Auricularia auricula. Applied Biochemistry and Biotechnology, 176, 253–266.

    Article  CAS  Google Scholar 

  4. Nie, H. L., Liu, L., Yang, H. Q., Guo, H. Z., Liu, X., Tan, Y. H., Wen Wang, W., Quan, J., & Zhu, L. M. (2016). A novel heptapeptide with tyrosinase inhibitory activity identified from a phage display library. Applied Biochemistry and Biotechnology, 1–14.

  5. Howell, R. C., Schweitzer, A. D., Casadevall, A., & Dadachova, E. A. (2008). Chemosorption of radiometals of interest to nuclear medicine by synthetic melanins. Nuclear Medicine & Biology, 35(3), 353–360.

    Article  CAS  Google Scholar 

  6. Ye, M., Wang, Y., Guo, G. Y., He, Y. L., Lu, Y., Ye, Y. W., Yang, Q. H., & Yang, P. Z. (2012). Physicochemical characteristics and antioxidant activity of arginine-modified melanin from Lachnum YM-346. Food Chemistry, 135(4), 2490–2497.

    Article  CAS  Google Scholar 

  7. Kim, T. K., Lin, Z. T., Li, W., Reiter, R. J., & Slominski, A. T. (2015). N1-acetyl-5-Methoxykynuramine (AMK) is produced in the human epidermis and shows antiproliferative effects. Endocrinology, 156(5), 1630–1636.

    Article  CAS  Google Scholar 

  8. Shi, L. S., Liu, H. Z., Zhong, J. P., & Pan, J. Q. (2015). Fresh-keeping effects of melanin-free extract from squid ink on yellowfin sea bream (Sparus latus) during cold storage. Journal of Aquatic Food Product Technology, 24(3), 199–212.

    Article  CAS  Google Scholar 

  9. Lu, Y., Ye, M., Song, S., Li, L., Shaikh, F., & Li, J. (2014). Isolation, purification, and anti-aging activity of melanin from Lachnum singerianum. Applied Biochemistry and Biotechnology, 174(2), 762–771.

    Article  CAS  Google Scholar 

  10. Wu, T. F., & Hong, J. D. (2016). Synthesis of water-soluble dopamine-melanin for ultrasensitive and ultrafast humidity sensor. Sensors And Actuators B-Chemical, 224, 178–184.

    Article  CAS  Google Scholar 

  11. Ye, M., Guo, G. Y., Lu, Y., Song, S., Wang, H. Y., & Yang, L. (2014). Purification, structure and anti-radiation activity of melanin from Lachnum YM404. International Journal of Biological Macromolecules, 63, 170–176.

    Article  CAS  Google Scholar 

  12. Wilczok, T., Bilinska, B., Buszman, E., & Kopera, M. (1984). Spectroscopic studies of chemically modified synthetic melanins. Archives of Biochemistry and Biophysics, 231(2), 257–262.

    Article  CAS  Google Scholar 

  13. Fogarty, R. V., & Tobin, J. M. (1996). Fungal melanins and their interactions with metals. Enzyme & Microbial Technology, 19(4), 311–317.

    Article  CAS  Google Scholar 

  14. Wang, Z. P., Deng, X. M., & Chang-Xin, W. U. (2007). Effect of melanin derived from white silky fowl on accumulation and toxicity of lead in Drosophila melanogaster. Chinese Journal of Animal Science, 43(7), 50–52.

    Google Scholar 

  15. Sajjan, S. S. (2013). Properties and functions of melanin pigment from Klebsiella sp. GSK. Korean Journal of Microbiology & Biotechnology, 41(1), 60–69.

    Article  CAS  Google Scholar 

  16. Hsu, P. C., & Guo, Y. L. (2002). Antioxidant nutrients and lead toxicity. Toxicology, 180(1), 33–34.

    Article  CAS  Google Scholar 

  17. Zhou, Y., Wang, Y. Y., Li, M. D., Gao, Z. Y., Hu, Q., & Gao, S. M. (2014). Anatomical and biochemical characteristics of Achnatherum splendens (Trin.) Nevski seedlings stressed on Pb2+. Applied Biochemistry and Biotechnology, 172(6), 3176–3193.

    Article  CAS  Google Scholar 

  18. Patrick, L. (2006). Lead toxicity, a review of the literature. Part 1: exposure, evaluation, and treatment. Alternative Medicine Review, 11(1), 2–22.

    Google Scholar 

  19. Gurer, H., & Ercal, N. (2000). Can antioxidants be beneficial in the treatment of lead poisoning? Free Radical Biology & Medicine, 29(10), 927–945.

    Article  CAS  Google Scholar 

  20. Ye, M., Wang, Y., Qian, M. S., Chen, X., & Hu, X. Q. (2011). Preparation and properties of the melanin from Lachnum singerianum. International Journal of Basic & Applied Sciences, 11(30), 51–58.

    Google Scholar 

  21. Olennikov, D. N., Tankhaeva, L. M., & Agafonova, S. V. (2011). Antioxidant components of Laetiporus sulphureus (Bull.: Fr.) Murr. fruit bodies. Applied Biochemistry and Microbiology, 47(4), 419–425.

    Article  CAS  Google Scholar 

  22. Wang, H. S., Pan, Y. M., Tang, X. J., & Huang, Z. Q. (2006). Isolation and characterization of melanin from Osmanthus fragrans’ seeds. LWT - Food Science and Technology, 39(5), 496–502.

    Article  CAS  Google Scholar 

  23. Gomez-Marin, A. M., & Sanchez, C. I. (2010). Thermal and mass spectroscopic characterization of a sulphur-containing bacterial melanin from Bacillus subtilis. Journal of Non-Crystalline Solids, 365(31–32), 1576–1580.

    Article  Google Scholar 

  24. Suryanarayanan, T. S., Ravishankar, J. P., Venkatesan, G., & Murali, T. S. (2004). Characterization of the melanin pigment of a cosmopolitan fungal endophyte. Mycological Research, 108(8), 974–978.

    Article  CAS  Google Scholar 

  25. Prota, G. (1995). The chemistry of melanins and melanogenesis. Springer Vienna, 64(64), 93–148.

    CAS  Google Scholar 

  26. Ye, M., Zhu, L., Yang, L., & Li, S. Y. (2009). Extraction technology of intracellular melanin and its biological function from Plectania YM421. Journal of Food Science & Biotechnology, 28(2), 229–233.

    CAS  Google Scholar 

  27. Song, S., Li, S. L., Su, N. N., Li, J. L., Shi, F., & Ye, M. (2016). Structural characterization, molecular modification and hepatoprotective effect of melanin from Lachnum YM226 on acute alcohol-induced liver injury in mice. Food & Function, 7, 3617–3627.

    Article  CAS  Google Scholar 

  28. Bilińska, B. (2001). On the structure of human hair melanins from an infrared spectroscopy analysis of their interactions with Cu 2+ ions. Spectrochimica Acta Part A Molecular & Biomolecular Spectroscopy, 57(12), 2525–2533.

    Article  Google Scholar 

  29. Ito, S., & Fujita, K. (1985). Microanalysis of eumelanin and pheomelanin in hair and melanomas by chemical degradation and liquid chromatography. Analytical Biochemistry, 144(2), 527–536.

    Article  CAS  Google Scholar 

  30. Latocha, M., Chodurek, E., Kurkiewicz, S., Świątkowska, L., & Wilczok, T. (2000). Pyrolytic GC-MS analysis of melanin from black, gray and yellow strains of Drosophila melanogaster. Journal of Analytical & Applied Pyrolysis, 56(56), 89–98.

    Article  CAS  Google Scholar 

  31. Jalmi, P., Bodke, P., Wahidullah, S., & Raghukumar, S. (2012). The fungus Gliocephalotrichum simplex as a source of abundant, extracellular melanin for biotechnological applications. World Journal of Microbiology & Biotechnology, 28(2), 505–512.

  32. Katritzky, A. R., Akhmedov, N. G., Denisenko, S. N., & Denisko, O. V. (2002). 1H NMR spectroscopic characterization of solutions of Sepia melanin, Sepia melanin free acid and human hair melanin. Pigment Cell Research, 15(2), 93–97.

    Article  CAS  Google Scholar 

  33. Yao, Z., Qi, J., & Wang, L. (2012). Isolation, fractionation and characterization of melanin-like pigments from chestnut (Castanea mollissima) shells. Journal of Food Science, 77(6), C671–C676.

    Article  CAS  Google Scholar 

  34. Zhong, J., Frases, S., Wang, H., Casadevall, A., & Stark, R. E. (2008). Following fungal melanin biosynthesis with solid-state NMR: biopolymer molecular structures and possible connections to cell-wall polysaccharides. Biochemistry, 47(16), 4701–4710.

    Article  CAS  Google Scholar 

  35. Sarna, T., Froncisz, W., Hyde, & James, S. (1980). Cu 2+ probe of metal-ion binding sites in melanin using electron paramagnetic resonance spectroscopy II. Natural melanin. Archives of Biochemistry & Biophysics, 202(1), 304–313.

    Article  CAS  Google Scholar 

  36. Zdybel, M., Chodurek, E., & Pilawa, B. (2011). EPR studies of DOPA-melanin complexes with Fe(III). Applied Magnetic Resonance, 40(1), 113–123.

    Article  CAS  Google Scholar 

  37. Weil, J. A., & Bolton, J. R. (2007). Electron paramagnetic resonance: elementary theory and practical applications. In C.B. Frech (ed.). Hoboken, New Jersey.

  38. Larsson, B., & Tjalve, H. (1978). Studies on the melanin-affinity of metal ions. Acta Physiologica Scandinavica, 104(4), 479–484.

    Article  CAS  Google Scholar 

  39. Najder-Kozdrowska, L., Pilawa, B., Wieckowski, A. B., Buszman, E., & Wrzesniok, D. (2009). Influence of copper(II) ions on radicals in DOPA-melanin. Applied Magnetic Resonance, 36(1), 81–88.

    Article  CAS  Google Scholar 

  40. Moneim, A. E. A., Dkhil, M. A., & Al-Quraishy, S. (2011). The protective effect of flaxseed oil on lead acetate-induced renal toxicity in rats. Journal of Hazardous Materials, 194(194), 250–255.

    Article  Google Scholar 

  41. Mudipalli, A. (2007). Lead hepatotoxicity & potential health effects. Indian Journal of Medical Research, 126(6), 518–527.

    CAS  Google Scholar 

  42. Chen, H. X., Qu, Z., Fu, L. L., Dong, P., & Zhang, X. (2009). Physicochemical properties and antioxidant capacity of 3 polysaccharides from green tea, oolong tea, and black tea. Journal of Food Science, 74(6), C469–C474.

    Article  CAS  Google Scholar 

  43. Palumbo, A., D'Ischia, M., Misuraca, G., Prota, G., & Schultz, T. M. (1988). Structural modifications in biosynthetic melanins induced by metal ions. Biochimica et Biophysica Acta, 964(2), 193–199.

    Article  CAS  Google Scholar 

  44. Guo, X., Chen, S. G., Hu, Y. Q., Li, G. Y., Liao, N. B., Ye, X. Q., Liu, D. H., & Xue, C. H. (2014). Preparation of water-soluble melanin from squid ink using ultrasound-assisted degradation and its anti-oxidant activity. Journal of Food Science And Technology-Mysore, 51(12), 3680–3690.

    Article  CAS  Google Scholar 

  45. Zheng, W. F., Yin, Z. J., Chen, C. F., Zhang, M. M., & Zhao, Y. X. (2009). Phenolic compounds from submerged cultures of Phaeoporus obliquus enhance tolerance of lead-treated mice. Mycosystema, 28(1), 112–119.

    CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (31270060).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jinglei Li or Ming Ye.

Ethics declarations

All animals were treated in accordance with the guidelines of the Principle of Laboratory Animal Care (NIH Publication, revised 1985)

Additional information

Shuai Zong and Lan Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zong, S., Li, L., Li, J. et al. Structure Characterization and Lead Detoxification Effect of Carboxymethylated Melanin Derived from Lachnum Sp.. Appl Biochem Biotechnol 182, 669–686 (2017). https://doi.org/10.1007/s12010-016-2353-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2353-8

Keywords

Navigation