Skip to main content
Log in

X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Borzani, W., Lima, U. A., & Aquarone, E. (1975). Engenharia bioquímica. São Paulo: Edgard Blucher.

    Google Scholar 

  2. Lima, U. A., Aquarone, E., Borzani, W., & Schmidell, W. (2001). Biotecnologia industrial: Processos fermentativos e enzimáticos. São Paulo: Edgard Blüncher.

    Google Scholar 

  3. Gießauf, A., Magor, W., Steinberger, D. J., & Marr, R. (1999). A study of hydrolases stability in supercritical carbon dioxide (SC-CO2). Enzyme and Microbial Technology, 24, 577–583.

    Article  Google Scholar 

  4. Gießauf, A., & Gamse, T. (2000). A simple process for increasing the specific activity of porcine pancreatic lipase by supercritical carbon dioxide treatment. Journal of Molecular Catalysis B: Enzymatic, 9, 57–64.

    Article  Google Scholar 

  5. Bauer, C., Gamse, T., & Marr, R. (2001). Quality improvement of crude porcine pancreatic lipase preparations by treatment with humid supercritical carbon dioxide. Biochemical Engineering Journal, 9, 119–123.

    Article  CAS  Google Scholar 

  6. Findrik, Z., Vasic-Racki, D., Primozic, M., Habulin, M., & Knez, Z. (2005). Enzymatic activity of L-amino acid oxidase from snake venom Crotalus adamanteus in supercritical CO2. Biocatalysis and Biotransformation, 23, 315–321.

    Article  CAS  Google Scholar 

  7. Oliveira, D., Feihrmann, A. C., Rubira, A. F., Kunita, M. H., Dariva, C., & Oliveira, J. V. (2006). Assessment of two immobilized lipases activity treated in compressed fluids. Journal of Supercritical Fluids, 38, 373–382.

    Article  CAS  Google Scholar 

  8. Fricks, A. T., Souza, D. P. B., Oestreicher, E. G., Antunes, O. A. C., Girardi, J. S., Oliveira, D., & Dariva, C. (2006). Evaluation of radish (Raphanus sativus L.) peroxidase activity after high-pressure treatment with carbon dioxide. Journal of Supercritical Fluids, 38, 347–353.

    Article  CAS  Google Scholar 

  9. Primo, M. S., Ceni, G. C., Marcon, N. S., Antunes, O. A. C., Oliveira, D., & Oliveira, J. V. (2007). Effects of compressed carbon dioxide treatment on the specificity of oxidase enzymatic complexes from mate tea leaves. Journal of Supercritical Fluids, 43, 283–290.

    Article  CAS  Google Scholar 

  10. Andrade, J. M., Oestreicher, E. G., Oliveira, J. V., Oliveira, D., Antunes, O. A. C., & Dariva, C. (2008). Effect of treatment with compressed CO2 and propane on D-hydantoinase activity. Journal of Supercritical Fluids, 46, 342–350.

    Article  CAS  Google Scholar 

  11. Eisenmenger, M. J., & Reyes-de-Corcuera, J. I. (2009). High hydrostatic pressure increased stability and activity of immobilized lipase in hexane. Enzyme and Microbial Technology, 45, 118–125.

    Article  CAS  Google Scholar 

  12. Wang, S. S.-S., Chao, H.-S., Liu, H.-L., & Liu, H.-S. (2009). Stability of hen egg white lysozyme during denaturation is enhanced by pretreatment with supercritical carbon dioxide. Journal of Bioscience and Bioengineering, 107, 35–359.

    Google Scholar 

  13. Franken, L. P. G., Marcon, N. S., Treichel, H., Oliveira, D., Freire, D. M. G., Dariva, C., Destain, J., & Oliveira, J. V. (2010). Effect of treatment with compressed propane on lipases hydrolytic activity. Food and Bioprocess Technology, 3, 511–520.

    Article  CAS  Google Scholar 

  14. Kuhn, G., Marangoni, M., Freire, D. M. G., Soares, V. F., Godoy, M. G., Castro, A., Di Luccio, M., Treichel, H., Mazutti, M. A., Oliveira, D., & Oliveira, J. V. (2010). Esterification activities of non-commercial lipases after pre-treatment in pressurized propane. Journal of Chemical Technology and Biotechnology, 85, 839–844.

    Article  CAS  Google Scholar 

  15. Kuhn, G., Coghetto, C., Treichel, H., Oliveira, D., & Oliveira, J. V. (2011). Effect of compressed fluids treatment on the activity of inulinase from Kluyveromyces marxianus NRRL Y-7571 immobilized in montmorillonite. Process Biochemistry, 46, 2286–2290.

    Article  CAS  Google Scholar 

  16. Kuhn, G., Dalla Rosa, C., Silva, M. F., Treichel, H., Oliveira, D., & Oliveira, J. V. (2013). Synthesis of fructooligosaccharides from Aspergillus niger commercial inulinase immobilized in montmorillonite pretreated in pressurized propane and LPG. Applied Biochemistry and Biotechnology, 169, 750–760.

    Article  CAS  Google Scholar 

  17. Manera, A. P., Kuhn, G., Polloni, A., Marangoni, M., Zabot, G., Kalil, S. J., Oliveira, D., Treichel, H., Oliveira, J. V., Mazutti, M. A., & Maugeri, F. (2011). Effect of compressed fluids treatment on the activity, stability and enzymatic reaction performance of β-galactosidase. Food Chemistry, 125, 1235–1240.

    Article  CAS  Google Scholar 

  18. Senyay-Oncel, D., & Yesil-Celiktas, O. (2011). Activity and stability enhancement of α-amylase treated with sub- and supercritical carbon dioxide. Journal of Bioscience and Bioengineering, 112, 435–440.

    Article  CAS  Google Scholar 

  19. Braga, A. R. C., Silva, M. F., Oliveira, J. V., Treichel, H., & Kalil, S. J. (2012). Effect of compressed fluids treatment on β-galactosidase activity and stability. Bioprocess and Biosystems Engineering, 35, 1541–1547.

    Article  CAS  Google Scholar 

  20. Liu, Y., Chen, D., Xu, L., & Yan, Y. (2012). Evaluation of structure and hydrolysis activity of Candida rugosa Lip7 in presence of sub-/super-critical CO2. Enzyme and Microbial Technology, 51, 354–358.

    Article  CAS  Google Scholar 

  21. Liu, Y., Chen, D., & Wang, S. (2013). Effect of sub- and super-critical CO2 pretreatment on conformation and catalytic properties evaluation of two commercial enzymes of CALB and lipase PS. Journal of Chemical Technology and Biotechnology, 88, 1750–1756.

    Article  CAS  Google Scholar 

  22. Liu, Y., Chen, D., & Yan, Y. (2013). Effect of ionic liquids, organic solvents and supercritical CO2 pretreatment on the conformation and catalytic properties of Candida rugosa lipase. Journal of Molecular Catalysis B: Enzymatic, 90, 123–127.

    Article  CAS  Google Scholar 

  23. Silva, M. F., Golunski, S. M., Rigo, D., Mossi, V., Di Luccio, M., Mazutti, M. A., Oliveira, D., Oliveira, J. V., & Treichel, H. (2012). Pressurized propane: an alternative technique to increase inulinase activity. Industrial Biotechnology, 8, 293–299.

    Article  CAS  Google Scholar 

  24. Silva, M. F., Golunski, S. M., Rigo, D., Mossi, V., Di Luccio, M., Mazutti, M. A., Pergher, S. B. C., Oliveira, D., Oliveira, J. V., & Treichel, H. (2013). Liquefied petroleum gas as solvent medium for the treatment of immobilized inulinases. Journal of Chemical Technology and Biotechnology, 88, 280–286.

    Article  CAS  Google Scholar 

  25. Silva, M. F., Rigo, D., Mossi, V., Dallago, R. M., Di Luccio, M., Henrick, P., Kuhn, G. O., Dalla Rosa, C., Oliveira, D., Oliveira, J. V., & Treichel, H. (2013). Evaluation of enzymatic activity of commercial inulinase from Aspergillus niger immobilized in polyurethane foam. Food and Bioproducts Processing, 91, 54–59.

    Article  CAS  Google Scholar 

  26. Silva, M. F., Rigo, D., Mossi, V., Golunski, S. M., Kuhn, G. O., Di Luccio, M., Dallago, R. M., Oliveira, D., Oliveira, J. V., & Treichel, H. (2013). Enzymatic synthesis of fructooligosaccharides by inulinases from Aspergillus niger and Kluyveromyces marxianus NRRL Y-7571 in aqueous–organic médium. Food Chemistry, 138, 148–153.

    Article  CAS  Google Scholar 

  27. Chen, D., Peng, C., Zhang, H., & Yan, Y. (2013). Assessment of activities and conformation of lipases treated with sub- and supercritical carbon dioxide. Applied Biochemistry and Biotechnology, 169, 2189–2201.

    Article  CAS  Google Scholar 

  28. Chen, D., Zhang, H., Xu, J., & Yan, Y. (2013). Effect of sub- and supercritical CO2 treatment on the properties of Pseudomonas cepacia lipase. Enzyme and Microbial Technology, 53, 110–117.

    Article  CAS  Google Scholar 

  29. Melgosa, R., Sanz, M. T., Solaesa, A. G., Bucio, S. L., & Beltrán, S. (2015). Enzymatic activity and conformational and morphological studies of four commercial lipases treated with supercritical carbon dioxide. Journal of Supercritical Fluids, 97, 51–62.

    Article  CAS  Google Scholar 

  30. Wang, J., Cao, Y., Sun, B., Wang, C., & Yo, Y. (2011). Effect of ultrasound on the activity of alliinase from fresh garlic. Ultrasonics Sonochemistry, 18, 534–540.

    Article  CAS  Google Scholar 

  31. Wang, Z., Lin, X., Li, P., Zhang, J., Wang, S., & Ma, H. (2012). Effects of low intensity ultrasound on cellulase pretreatment. Bioresource Technology, 117, 222–227.

    Article  CAS  Google Scholar 

  32. Ma, H., Huang, L., Jia, J., He, R., Luo, L., & Zhu, W. (2011). Effect of energy-gathered ultrasound on Alcalase. Ultrasonics Sonochemistry, 18, 419–424.

    Article  CAS  Google Scholar 

  33. Ceni, G., Silva, P. C., Lerin, L., Oliveira, J. V., Toniazzo, G., Treichel, H., Oestreicher, E. G., & Oliveira, D. (2011). Ultrasound-assisted enzymatic transesterification of methyl benzoate and glycerol to 1-glyceryl benzoate in organic solvent. Enzyme and Microbial Technology, 48, 169–174.

    Article  CAS  Google Scholar 

  34. Batistella, L., Ustra, M. K., Richetti, A., Pergher, S. B. C., Treichel, H., Oliveira, J. V., Lerin, L., & Oliveira, D. (2012). Assessment of two immobilized lipases activity and stability to low temperatures in organic solvents under ultrasound-assisted irradiation. Bioprocess and Biosystems Engineering, 35, 351–358.

    Article  CAS  Google Scholar 

  35. Batistella, L., Lerin, L. A., Brugnerotto, P., Danielli, A. J., Trentin, C. M., Popiolsky, A., Treichel, H., Oliveira, J. V., & Oliveira, D. (2012). Ultrasound-assisted lipase-catalyzed transesterification of soybean oil in organic solvent system. Ultrasonics Sonochemistry, 19, 452–458.

    Article  CAS  Google Scholar 

  36. Souza, M., Mezadri, E. T., Zimmerman, E., Leaes, E. X., Bassaco, M. M., Dal Prá, V., Foletto, E., Cancellier, A., Terra, L. M., Jahn, S. L., & Mazutti, M. A. (2013). Evaluation of activity of a commercial amylase under ultrasound-assisted irradiation. Ultrasonics Sonochemistry, 20, 89–94.

    Article  CAS  Google Scholar 

  37. Leaes, E. X., Lima, D., Miklasevicius, L., Ramon, A. P., Dal Prá, V., Bassaco, M. M., Terra, L. M., & Mazutti, M. A. (2013). Effect of ultrasound-assisted irradiation on the activities of α-amylase and amyloglucosidase. Biocatalysis and Agricultural Biotechnology, 2, 21–25.

    Article  Google Scholar 

  38. Szabó, O. E., & Csiszár, E. (2013). The effect of low-frequency ultrasound on the activity and efficiency of a commercial cellulase enzyme. Carbohydrate Polymers, 98, 1483–1489.

    Article  CAS  Google Scholar 

  39. Bashari, M., Eibaid, A., Wang, J., Tian, Y., Xu, X., & Jin, Z. (2013). Influence of low ultrasound intensity on the degradation of dextran catalyzed by dextranase. Ultrasonics Sonochemistry, 20, 155–161.

    Article  CAS  Google Scholar 

  40. Yu, Z. L., Zeng, W. C., & Lu, X. L. (2013). Influence of ultrasound to the activity of tyrosinase. Ultrasonics Sonochemistry, 20, 805–809.

    Article  CAS  Google Scholar 

  41. Yu, Z. L., Zeng, W. C., Zhang, W. H., Liao, X. P., & Shi, B. (2014). Effect of ultrasound on the activity and conformation of a-amylase, papain and pepsin. Ultrasonics Sonochemistry, 21, 930–936.

    Article  CAS  Google Scholar 

  42. Silva, J. R. F., Cantelli, K. C., Tres, M. V., Dalla Rosa, C., Meirelles, M. A. A., Soares, M. B. A., Oliveira, D., Oliveira, J. V., Treichel, H., & Mazutti, M. A. (2013). Treatment with compressed liquefied petroleum gas and ultrasound to improve celulase activity. Biocatalysis and Agricultural Biotechnology, 2, 102–107.

    Article  Google Scholar 

  43. Ran, J., Jia, S., Liu, Y., & Wu, S. (2009). Characterization of cellulase under various intensities of static magnetic fields. Catalysis Communications, 11, 91–95.

    Article  CAS  Google Scholar 

  44. Liu, Y., Jia, S., Ran, J., & Wu, S. (2010). Effects of static magnetic field on activity and stability of immobilized α-amylase in chitosan bead. Catalysis Communications, 11, 364–367.

    Article  CAS  Google Scholar 

  45. Mizuki, T., Watanabe, N., Nagaoka, Y., Fukushima, T., Morimoto, H., Usami, R., & Maekawa, T. (2010). Activity of an enzyme immobilized on superparamagnetic particles in a rotational magnetic field. Biochemical and Biophysical Research Communications, 393, 779–782.

    Article  CAS  Google Scholar 

  46. Vashisth, A., & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunflower (Helianthus annuus) seeds exposed to static magnetic field. Journal of Plant Physiology, 167, 149–156.

    Article  CAS  Google Scholar 

  47. Cakmaka, T., Cakmakb, Z. E., Dumlupinarc, R., & Tekinayd, T. (2012). Analysis of apoplastic and symplastic antioxidant system in shallot leaves: impacts of weak static electric and magnetic field. Journal of Plant Physiology, 169, 1066–1073.

    Article  CAS  Google Scholar 

  48. Radharishnan, R., & Kumari, B. D. R. (2012). Pulsed magnetic field: a contemporary approach offers to enhance plant growth and yield of soybean. Plant Physiology and Biochemistry, 51, 139–144.

    Article  CAS  Google Scholar 

  49. Zheng, M., Zhang, S., Ma, G., & Wang, P. (2011). Effect of molecular mobility on coupled enzymatic reactions involving cofactor regeneration using nanoparticle-attached enzymes. Journal of Biotechnology, 154, 274–280.

    Article  CAS  Google Scholar 

  50. Zheng, M., Su, Z., Ji, X., Ma, G., Wang, P., & Zhang, S. (2013). Magnetic field intensified bi-enzyme system with in situ cofactor regeneration supported by magnetic nanoparticles. Journal of Biotechnology, 168, 212–217.

    Article  CAS  Google Scholar 

  51. Lehninger, A. L., Nelson, D. L., & Cox, M. M. (2002). Princípios de Bioquímica (3rd ed.). São Paulo: Sarvier.

    Google Scholar 

  52. Stryer, L. (1995). Biochemistry. New York: Freeman.

    Google Scholar 

  53. Monhemi, H., & Housaindokht, M. R. (2012). How enzymes can remain active and stable in a compressed gas? New insights into the conformational stability of Candida antarctica lipase B in near-critical propane. Journal of Supercritical Fluids, 72, 161–167.

    Article  CAS  Google Scholar 

  54. Monhemi, H., Housaindokht, M. R., Bozorgmehr, M. R., & Googheri, M. S. S. (2012). Enzyme is stabilized by a protection layer of ionic liquids in supercritical CO2: insights from molecular dynamic simulation. Journal of Supercritical Fluids, 69, 1–7.

    Article  CAS  Google Scholar 

  55. Housaindokht, M. R., Bozorgmehr, M. R., & Monhemi, H. (2012). Structural behavior of Candida antarctica lipase B in water and supercritical carbon dioxide: a molecular dynamic simulation study. Journal of Supercritical Fluids, 63, 180–186.

    Article  CAS  Google Scholar 

  56. Housaindokht, M. R., & Monhemi, H. (2013). The open lid conformation of the lipase is explored in the compressed gas: new insights from molecular dynamic simulation. Journal of Molecular Catalysis B: Enzymatic, 87, 135–138.

    Article  CAS  Google Scholar 

  57. Kao, F.-J., Ekhorutomwen, S. A., & Sawan, S. P. (1997). Residual stability of lipase from Candida rugosa in hexane, supercritical CO2, and supercritical SF6. Biotechnology Techniques, 11, 849–852.

    Article  CAS  Google Scholar 

  58. Bauer, C., Steinberger, D.-J., Schlauer, G., Gamse, T., & Marr, R. (2000). Activation and denaturation of hydrolases in dry and humid supercritical carbon dioxide (SC-CO2). Journal of Supercritical Fluids, 19, 79–86.

    Article  CAS  Google Scholar 

  59. Habulin, M., & Knez, Z. (2001). Activity and stability of lipases from different sources in supercritical carbon dioxide and near-critical propane. Journal of Chemical Technology and Biotechnology, 76, 1260–1266.

    Article  CAS  Google Scholar 

  60. Zhou, L., Wu, J., Hu, X., Zhi, X., & Liao, X. (2009). Alterations in the activity and structure of pectin methylesterase treated by high pressure carbon dioxide. Journal of Agricultural and Food Chemistry, 57, 1890–1895.

    Article  CAS  Google Scholar 

  61. Liao, X., Zhang, Y., Bei, J., Hu, X., & Wu, J. (2009). Alterations of molecular properties of lipoxygenase induced by dense phase carbon dioxide. Innovative Food Science and Emerging Technologies, 10, 47–53.

    Article  CAS  Google Scholar 

  62. Fricks, A. T., Oestreicher, E. G., Cardoso Filho, L., Feihrmann, A. C., Cordeiro, Y., & Dariva, O. A. C. (2009). Antunes, effects of compressed fluids on the activity and structure of horseradish peroxidase. Journal of Supercritical Fluids, 50, 162–168.

    Article  CAS  Google Scholar 

  63. Wang, S. S.-S., Lai, J.-T., Huang, M.-S., Tai, C. Y., & Liu, H.-S. (2010). Deactivation of isoamylase and β-amylase in the agitated reactor under supercritical carbon dioxide. Bioprocess and Biosystems Engineering, 33, 1007–1015.

    Article  CAS  Google Scholar 

  64. Hu, W., Zhang, Y., Wang, Y., Zhou, L., Leng, X., Liao, X., & Hu, X. (2011). Aggregation and homogenization, surface charge and structural change, and inactivation of mushroom tyrosinase in an aqueous system by subcritical/supercritical carbon dioxide. Langmuir, 27, 909–916.

    Article  CAS  Google Scholar 

  65. Lichty, J. J., Malecki, J. L., Agnew, H. D., Michelson-Horowitz, D. J., & Tan, S. (2005). Comparison of affinity tags for protein purification. Protein Expression and Purification, 41, 98–105.

    Article  CAS  Google Scholar 

  66. Terpe, K. (2003). Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology Biotechnology, 60, 523–533.

    Article  CAS  Google Scholar 

  67. Skerra, A., & Schmidt, T. G. M. (2000). Use of the Strep-tag and streptavidin for detection and purification of recombinant proteins. Methods in Enzymology, 326, 271–304.

    Article  CAS  Google Scholar 

  68. Schmidt, T. G. M. (2007). A Skerra, the Strep-tag system for one-step purification and high-affinity detection or capturing of proteins. Nature Protocols, 2, 1528–1535.

    Article  CAS  Google Scholar 

  69. IBA–Solutions for life science. (2014). Expression and purification of proteins using Strep-tag® or Twin-Strep-tag®—a comprehensive manual. Available from www.iba-lifesciences.com/technical-support.html.

  70. Harper, S., & Speicher, D. W. (2011). Purification of proteins fused to glutathione S-tranferase. Methods in Molecular Biology, 681, 259–280.

    Article  CAS  Google Scholar 

  71. Block, H., Maertens, B., Spriestersbach, A., Brinker, N., Kubicek, J., Fabis, R., Labahn, J., & Schäfer, F. (2009). Immobilized-metal affinity chromatography (IMAC): a review. Methods in Enzymology, 463, 439–473.

    Article  CAS  Google Scholar 

  72. Arnau, J., Lauritzen, C., Petersen, G. E., & Pedersen, J. (2005). Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expression and Purification, 48, 1–13.

    Article  CAS  Google Scholar 

  73. Bonnerjea, J., Oh, S., Hoare, M., & Dunnill, P. (1986). Protein purification: the right step at the right time. Biotechnology, 4, 954–958.

    Article  CAS  Google Scholar 

  74. Liu, H. F., Ma, J., Winter, C., & Bayer, R. (2010). Recovery and purification process development for monoclonal antibody production. mAbs Landes Bioscience, 2, 480–499.

    Google Scholar 

  75. Astefanei, A., Kok, W. T., Bäuerlein, P., Núñes, O., Galceran, M. T., De Voogt, P., & Schoenmakers, P. J. (2015). Characterization of aggregates of surface modified fullerenes by asymmetrical flow field-flow fractionation with multi-angle light scattering detection. Journal of Chromatography A, 1408, 197–206.

    Article  CAS  Google Scholar 

  76. Vezocnik, V., Rebolj, K., Sitar, S., Ota, K., Tusek-Znidaric, M., Strus, J., Sepcic, K., Pahovnik, D., Macek, P., & Zagar, E. (2015). Size fractionation and size characterization of nanoemulsions of lipid droplets and large unilamellar lipid vesicles by asymmetric-flow field-flow fractionation/multi-angle light scattering and dynamic light scattering. Journal of Chromatography A, 1418, 185–191.

    Article  CAS  Google Scholar 

  77. Wittgren, B., & Wahlund, K.-G. (1997). Fast molecular mass and size characterization of polysaccharides using asymmetrical flow field-flow fractionation-multiangle light scattering. Journal of Chromatography A, 760, 205–218.

    Article  CAS  Google Scholar 

  78. Boivin, S., Kozak, S., & Meijers, R. (2013). Optimization of protein purification and characterization using Thermofluor screens. Protein Expression and Purification, 91, 192–206.

    Article  CAS  Google Scholar 

  79. Giacovazzo, C., Monaco, H. L., Viterbo, D., Scordari, F., Gilli, G., Zanotti, G., & Catti, M. (1992). Fundamentals of crystallography. New York: Oxford University Press.

    Google Scholar 

  80. Rupp, B. (2010). Biomolecular crystallography: principles, practice, and application to structural biology. New York: Garland Science.

    Google Scholar 

  81. W. F. Azevedo Jr (2004). Cristalização de macromoléculas biológicas, Department of Physics, Institute of Biosciences and Exact Sciences, University of State of São Paulo, São José do Rio Preto.

  82. Matthews, B. W. (1968). Solvent content of protein crystals. Journal of Molecular Biology, 33, 491–497.

    Article  CAS  Google Scholar 

  83. Ducruix, A., & Giegé, R. (1992). Crystallization of nucleic acids and proteins (a practical approach). Oxford: Oxford University Press.

    Google Scholar 

  84. Suryanarayana, C., & Norton, M. G. (1998). X-ray diffraction: a practical approach. New York: Plenum Press.

    Book  Google Scholar 

  85. Stout, G. H., & Jensen, L. H. (1968). X-ray structure determination: a practical guide. New York: Macmillan Publishing Company.

    Google Scholar 

  86. Rhodes, G. (1993). Crystallography made crystal clear: a guide for users of macromolecular models. Londres: Academic Press.

    Google Scholar 

  87. European Synchrotron Radiation Facility (ESRF), What is a synchrotron? Avaliable from: http://www.esrf.eu/about/synchrotron-science/synchrotron.

  88. Stoddard, B. L. (1996). Intermediate trapping and Laue X-ray diffraction: potential for enzyme mechanism, dynamics, and inhibitor screening. Pharmacology & Therapeutics, 70, 215–256.

    Article  CAS  Google Scholar 

  89. Garman, E. F., & Schneider, T. R. (1997). Macromolecular cryocrystallography. Journal of Applied Crystallography, 30, 211–237.

    Article  Google Scholar 

  90. Rondeau, J. M., & Schreuder, H. (2003). Protein crystallography and drug discovery. In The practice of medicinal chemistry (2nd ed.). Amsterdam: Elsevier.

    Google Scholar 

  91. Rondeau, J. M., & Schreuder, H. (2008). Protein crystallography and drug discovery. In The practice of medicinal chemistry (3rd ed.). Amsterdam: Elsevier.

    Google Scholar 

  92. Winn, M. D., Ballard, C. C., Cowtan, K. D., Dodson, E. J., Emsley, P., Evans, P. R., Keegan, R. M., Krissinel, E. B., Leslie, A. G. W., McCoy, A. J., McNicholas, S. J., Murshudov, G. N., Pannu, N. S., Potterton, E. A., Powell, H. R., Read, R. J., Vagin, A., & Wilson, K. S. (2011). Overview of the CCP4 suite and current developments. Acta Crystallographica Section D, D67, 235–242.

    Article  CAS  Google Scholar 

  93. Kabsch, W. (2010). XDS. Acta Crystallographica Section D, D66, 125–132.

    Article  CAS  Google Scholar 

  94. McCoy, A. J., Grosse-Kunstleve, R. W., Adams, P. D., Winn, M. D., Storoni, L. C., & Read, R. J. (2007). Phaser crystallographic software. Journal of Applied Crystallography, 40, 658–674.

    Article  CAS  Google Scholar 

  95. Emsley, P., & Cowtan, K. D. (2004). Coot: model-building tools for molecular graphics. Acta Crystallographica Section D, D60, 2126–2132.

    Article  CAS  Google Scholar 

  96. Adams, P. D., Afonine, P. V., Bunkóczi, G., Chen, V. B., Davis, I. W., Echols, N., Headd, J. J., Hung, L. W., Kapral, G. J., Grosse-Kunstleve, R. W., McCoy, A. J., Moriarty, N. W., Oeffner, R., Read, R. J., Richardson, D. C., Terwilliger, T. C., & Zwart, P. H. (2010). PHENIX: a comprehensive python-based system for macromolecular structure solution. Acta Crystallographica Section D, D66, 213–221.

    Article  CAS  Google Scholar 

  97. W. F. Azevedo Jr (2004). Refinamento cristalográfico de biomoléculas, Department of Physics, Institute of Biosciences and Exact Sciences, University of State of São Paulo, São José do Rio Preto, São José do Rio Preto.

  98. Morris, A. L., MacArthur, M. W., Hutchinson, E. G., & Thornton, J. M. (1992). Stereochemical quality of protein structure coordinates. Proteins: Structure, Function and Bioinformatics, 12, 345–364.

    Article  CAS  Google Scholar 

  99. World Wide Protein Data Bank (PDB). Avaliable from: http://www.pdb.org/index.html.

  100. Dutta, S., & Berman, H. M. (2005). Large macromolecular complexes in the Protein Data Bank: a status report. Structure, 13, 381–388.

    Article  CAS  Google Scholar 

  101. Kendrew, J. C., Bodo, G., Dintzis, H. M., Parrish, R. G., Wyckoff, H., & Phillips, D. C. (1958). 3-dimensional model of the myoglobin molecule obtained by X-ray analysis. Nature, 181, 662–666.

    Article  CAS  Google Scholar 

  102. Perutz, M. F., Rossmann, M. G., Cullis, A. F., Muirhead, H., Will, G., & North, A. C. T. (1960). Structure of haemoglobin-3-dimensional Fourier synthesis at 5.5 Å resolution, obtained by X-ray analysis. Nature, 185, 416–422.

    Article  CAS  Google Scholar 

  103. Pandey, A. (2004). Concise encyclopedia of bioresource technology. New York: The Haworth Reference Press.

    Google Scholar 

  104. Houde, A., Kademi, A., & Leblanc, D. (2004). Lipases and their industrial applications: an overview. Applied Biochemistry and Biotechnology, 118, 155–170.

    Article  CAS  Google Scholar 

  105. Knez, Z. (2009). Enzymatic reactions in dense gases. Journal of Supercritical Fluids, 47, 357–372.

    Article  CAS  Google Scholar 

  106. Liu, Y., Chen, D., Yan, Y., Peng, C., & Xu, L. (2011). Biodiesel synthesis and conformation of lipase from Burkholderia cepacia in room temperature ionic liquids and organic solvents. Bioresource Technology, 102, 10414–10418.

    Article  CAS  Google Scholar 

  107. Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). LLC, New York: Springer Science + Business Media.

    Book  Google Scholar 

  108. Ma, F., & Hanna, M. A. (1999). Biodiesel production: a review. Bioresource Technology, 70, 1–15.

    Article  CAS  Google Scholar 

  109. Meher, L. C., Sagar, D. V., & Naik, S. N. (2006). Technical aspects of biodiesel production by transesterification—a review. Renewable and Sustainable Energy Reviews, 10, 248–268.

    Article  CAS  Google Scholar 

  110. Singh, S. P., & Singh, D. (2010). Biodiesel production through the use of different sources and characterization of oils and their esters as the substitute of diesel: a review. Renewable and Sustainable Energy Reviews, 14, 200–216.

    Article  CAS  Google Scholar 

  111. Leung, D. Y. C., Wu, X., & Leung, M. K. H. (2010). A review on biodiesel production using catalyzed transesterification. Applied Energy, 87, 1083–1095.

    Article  CAS  Google Scholar 

  112. Gray, K. A., Zhao, L., & Emptage, M. (2006). Bioethanol. Current Opinion in Chemical Biology, 10, 141–146.

    Article  CAS  Google Scholar 

  113. Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. J. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource Technology, 101, 4851–4861.

    Article  CAS  Google Scholar 

  114. Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conversion and Management, 52, 858–875.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank CNPq and CAPES for the financial support and scholarships. KFS was supported by the Dahlem International Network PostDoc grant from Freie Universität Berlin.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Vladimir Oliveira.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feiten, M.C., Di Luccio, M., Santos, K.F. et al. X-Ray Crystallography as a Tool to Determine Three-Dimensional Structures of Commercial Enzymes Subjected to Treatment in Pressurized Fluids. Appl Biochem Biotechnol 182, 429–451 (2017). https://doi.org/10.1007/s12010-016-2336-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2336-9

Keywords

Navigation