Skip to main content
Log in

Combined De-Algination Process as a Fractionation Strategy for Valorization of Brown Macroalga Saccharina japonica

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A combined process, de-algination followed by enzymatic saccharification, was designed to produce alginate and glucose from Saccharina japonica consecutively. The process conditions of de-algination were optimized separately for each stage of acidification and alkaline extraction. Collectively, the de-algination yield was 70.1% under the following optimized conditions: 2.4 wt% of Na2CO3, 70 °C, and 100 min with the acidified S. japonica immersed in a 0.5 wt% H2SO4 solution for 2 h at room temperature. The glucan content in the de-alginated S. japonica increased to 38.0%, which was approximately fivefold higher than that of the raw S. japonica. The enzymatic hydrolysis of the de-alginated S. japonica almost completed in 9 h, affording 5.2 g (96.8% of glucan digestibility) of glucose at a de-alginated S. japonica loading of 14.2 g.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Horn, S. J., Aasen, I. M., & Østgaard, K. (2000). Ethanol production from seaweed extract. Journal of Industrial Microbiology and Biotechnology, 25(5), 249–254.

    Article  CAS  Google Scholar 

  2. Percival, E., & McDowell, R. H. (1967). Chemistry and enzymology of marine algal polysaccharides (pp. 53–55). London and New York: Academic Press.

    Google Scholar 

  3. Qureshi, N., Saha, B. C., Dien, B., Hector, H. E., & Cotta, M. A. (2010). Production of butanol (a biofuel) from agricultural residues: part I—use of barley straw hydrolysate. Biomass and Bioenergy, 34(4), 559–565.

    Article  CAS  Google Scholar 

  4. Huesemann, M. H., Kuo, L. J., Urquhart, L., Gill, G. A., & Roesijadi, G. (2012). Acetone-butanol fermentation of marine macroalgae. Bioresource Technology, 108, 305–309.

    Article  CAS  Google Scholar 

  5. Sanchez, O. J., & Cardona, C. A. (2008). Trends in biotechnological production of fuel ethanol from different feedstocks. Bioresource Technology, 99(13), 5270–5295.

    Article  CAS  Google Scholar 

  6. Naik, S. N., Goud, V. V., Rout, P. K., & Dalai, A. K. (2010). Production of first and second generation biofules: a comprehensive review. Renewable and Sustainable Energy Reviews, 14(2), 578–597.

    Article  CAS  Google Scholar 

  7. Lee, J. Y., Ryu, H. J., & Oh, K. K. (2013). Acid-catalyzed hydrothermal severity on the fractionation of agricultural residues for xylose-rich hydrolyzates. Bioresource Technology, 132, 84–90.

    Article  CAS  Google Scholar 

  8. Demirbas, A. (2010). Use of algae as biofuel sources. Energy Conversion and Management, 51(12), 2738–2749.

    Article  CAS  Google Scholar 

  9. Goh, C. S., & Lee, K. T. (2010). A visionary and conceptual marcoalgae-based third-generation bioethanol(TGB) biorefinery in Sabah, Malaysia as an underlay for renewable and sustainable development. Renewable and Sustainable Energy Reviews, 14(2), 842–848.

    Article  CAS  Google Scholar 

  10. Suzuki, S., Furuya, K., & Takeuchi, I. (2006). Growth and annual production of the brown alga Laminaria japonica (Phaeophyta, Laminariales) introduced into the Uwa Sea in sourthern Japan. Journal of Experimental Marine Biology and Ecology, 339, 15–29.

    Article  Google Scholar 

  11. Kumar, P., Barrett, D., Delwiche, M., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial and Engineering Chemistry Research, 48(8), 3713–3729.

    Article  CAS  Google Scholar 

  12. Kim, D. H., Wang, D., Yun, E. J., Kim, S., Kim, S. R., & Kim, K. H. (2016). Validation of the metabolic pathway of the alginate-derived monomer in Saccharophagus degradans 2-40 T by gas chromatography–mass spectrometry. Process Biochemistry, 51(10), 1374–1379.

  13. Painter, T. J. (1983). Algal polysaccharides. In G. O. Aspinall (Ed.), The polysaccharide (pp. 195–285). New York: Academic Press.

    Chapter  Google Scholar 

  14. Bertagnolli, C., Uhart, A., Dupin, J. C., Carlos da Silva, M. G., Guibal, E., & Desbrieres, J. (2014). Biosorption of chromium by alginate extraction products from Sargassum filipendula: investigation of adsorption mechanisms using X-ray photoelectron spectroscopy analysis. Bioresource Technology, 164, 264–269.

    Article  CAS  Google Scholar 

  15. Honya, M., Kinoshita, T., Ishikawa, M., Mori, H., & Nisizawa, K. (1993). Monthly determination of alginate, M/G ratio, mannitol, and minerals in cultivated Laminaria japonica. Nippon Suisan Gakkaishi, 59(2), 295–299.

    Article  CAS  Google Scholar 

  16. Vauchel, P., Leroux, K., Kaas, R., Arhaliass, A., Baron, R., & Legrand, J. (2009). Kinetics modeling of alginate alkaline extraction from Laminaria digitate. Bioresource Technology, 100(3), 1291–1296.

    Article  CAS  Google Scholar 

  17. Nishide, E., Anzai, H., & Uchida, N. (1987). A comparative investigation on the water-soluble and the alkali-soluble alginates from various Japanese brown algae. Nippon Suisan Gakkaishi, 53(7), 1215–1219.

    Article  CAS  Google Scholar 

  18. Hernández-Carmona, G., McHugh, D. J., & López-Gutiérrez, F. (1999). Pilot plant scale extraction of alginates from Macrocystis pyrifera: studies on extraction conditions and methods of separating the alkaline-insoluble residue. Journal of Applied Phycology, 11(6), 493–502.

    Article  Google Scholar 

  19. Jork, A., Thürmer, F., Cramer, H., Zimmermann, G., Gessner, P., Hämel, K., Hofmann, G., Kuttler, B., Hahn, H. J., Josimovic-Alasevic, O., Fritsch, K. G., & Zimmermann, U. (2000). Biocompatible alginate from freshly collected Laminaria pallida for implantation. Applied Microbiology and Biotechnology, 53(2), 224–229.

    Article  CAS  Google Scholar 

  20. Vauchel, P., Kaas, R., Arhaliass, A., Baron, R., & Legrand, J. (2008). A new process for extracting alginates from Laminaria digitata: reactive extrusion. Food and Bioprocess Technology, 1(3), 297–300.

    Article  Google Scholar 

  21. Andriamanantoanina, H., & Rinaudo, M. (2010). Characterization of the alginates from five madagascan brown algae. Carbohydrate Polymers, 82(3), 555–560.

    Article  CAS  Google Scholar 

  22. Sanaa, A., Boulila, A., Boussaid, M., & Fadhel, N. B. (2013). Alginic acid and derivatives, new polymers from the endangered Pancratium maritimum L. Industrial Crops and Products, 44, 290–293.

    Article  CAS  Google Scholar 

  23. Yuan, Y., & Macquarrie, D. J. (2015). Microwave assisted step-by-step process for the production of fucoidan, alginate sodium, sugars and biochar from Ascophyllum nodosum through a biorefinery concept. Bioresource Technology, 198, 819–827.

    Article  CAS  Google Scholar 

  24. Lorbeer, A. J., Lahnstein, J., Bulone, V., Nguyen, T., & Zhang, W. (2015). Multiple-response optimization of the acidic treatment of the brown alga Ecklonia radiata for the sequential extraction of fucoidan and alginate. Bioresource Technology, 197, 302–309.

    Article  CAS  Google Scholar 

  25. Lee, J. Y., Li, P., Lee, J., Ryu, H. J., & Oh, K. K. (2013). Ethanol production from Saccharina japonica using an optimized extremely low acid pretreatment followed by simultaneous saccharification and fermentation. Bioresource Technology, 127, 119–125.

    Article  CAS  Google Scholar 

  26. Kennedy, J. F., & Bradshaw, I. J. (1987). The rapid quantitative determination of alginates by poly (hexamethylenebiguanidinium chloride) complexation in industrial liquors extracted from brown seaweed. Carbohydrate Polymers, 7(1), 35–50.

    Article  CAS  Google Scholar 

  27. Selig, M., Weiss, N., & Ji, Y. (2008). Enzymatic saccharification of lignocellulosic biomass . Golden: National Renewable Energy Laboratory.Report No. TP-510-42629

    Google Scholar 

  28. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, & Crocker, D. (2011). Determination of structural carbohydrates and lignin in biomass . Golden: National renewable Energy Laboratory.Report No. NREL/TP-510-42618

    Google Scholar 

  29. Hames, B., Scarlata, C., & Sluiter, A. (2008). Determination of protein content in biomass . Golden: National renewable Energy Laboratory.Report No. NREL/TP-510-42625

    Google Scholar 

  30. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of ash in biomass . Golden: National renewable Energy Laboratory.Report No. NREL/TP-510-42622

    Google Scholar 

Download references

Acknowledgements

The present research was conducted by the research fund of Dankook University in 2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyeong Keun Oh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ryu, H.J., Oh, K.K. Combined De-Algination Process as a Fractionation Strategy for Valorization of Brown Macroalga Saccharina japonica . Appl Biochem Biotechnol 182, 238–249 (2017). https://doi.org/10.1007/s12010-016-2323-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2323-1

Keywords

Navigation