Skip to main content
Log in

Hydrophobic Interaction Between Domain I of Albumin and B Chain of Detemir May Support Myristate-Dependent Detemir-Albumin Binding

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

An Erratum to this article was published on 02 December 2016

Abstract

The bindings of detemir [LysB29(Nε-tetradecanoyl)des(B30)-insulin] with two highly homologous albumins, HSA (human serum albumin) and BSA (bovine serum albumin), were investigated through CD, spectrofluorophotometry, and molecular docking analysis. The absence of any tryptophanyl residue in detemir makes albumin binding study possible by exclusive tryptophanyl spectral quenching at 340 nm (λem = 296 nm). The interactions found to be static (Kq > 1010 M−1 s−1) with Stern–Volmer constants ≈103 M−1. The observed ΔG 0 that was negative in all cases concludes the reactions were spontaneous. Domains I and III of an albumin unfold with 5.0 M urea at pH 7.4, although domain II remains intact. Significant decreases in ΔH 0 and ΔS 0 were due to unfolding explicit that detemir binding may involve domains I and III of albumins. Temperature-dependent changes in binding were higher in HSA than BSA but after unfolding such changes were very less, further indicating the role of domains I and III in detemir binding. Pro28 and Tyr26 of insulin were found to be interacting with Arg114 and Val116 of HSA domain I, while myristate segment of detemir binds to Lys519 of domain III. Interactions seem to be predominantly hydrophobic and entropy driven. Although detemir binds to albumin through myristate, the peptide part shows involvement in binding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

HSA:

Human serum albumin

BSA:

Bovine serum albumin

Ksv:

Stern–Volmer constant

Kq:

Quenching constant

K :

Binding constant

n :

Number of binding sites

ΔG 0 :

Standard free energy change

ΔH 0 :

Standard change in enthalpy

ΔS 0 :

Standard change in entropy

References

  1. Carter, D. C., & Ho, J. X. (1994). Structure of serum albumin. Advances in Protein Chemistry, 45, 153–204.

    Article  CAS  Google Scholar 

  2. Figge, J., Rossing, T. H., & Fencl, V. (1991). The role of serum proteins in acid-base equilibria. Journal of Laboratory and Clinical Medicine, 117, 453–467.

    CAS  Google Scholar 

  3. Pangeni, D., Kapil, C., Jairajpuri, M. A., & Sen, P. (2015). Inter-domain helix h10DOMI-h1DOMII is important in the molecular interaction of bovine serum albumin with curcumin: spectroscopic and computational analysis. European Biophysics Journal, 44(3), 139–148.

    Article  CAS  Google Scholar 

  4. Sen, P., Fatima, S., Ahmad, B., & Khan, R. H. (2009). Interactions of thioflavin T with serum albumins: spectroscopic analyses. Spectrochimica Acta Part A, 74, 94–99.

    Article  Google Scholar 

  5. Jana, S., Ghosh, S., Dalapati, S., & Guchhait, N. (2012). Exploring structural change of protein bovine serum albumin by external perturbation using extrinsic fluorescence probe: spectroscopic measurement, molecular docking and molecular dynamics simulation. Photochemical & Photobiological Sciences, 11, 323–332.

    Article  CAS  Google Scholar 

  6. Varshney, A., Sen, P., Ahmad, E., Rehan, M., Subbarao, N., & Khan, R. H. (2010). Ligand binding strategies of human serum albumin. How can the cargo be utilized? Chirality, 22(1), 77–87.

    Article  CAS  Google Scholar 

  7. Amin, Sanjiv, B. (2016). Bilirubin binding capacity in the preterm neonate. Clinics in Perinatology, 43, 241–257

  8. Ezra, A., Rabinovich-Nikitin, I., Rabinovich-Toidman, P., & Solomon, B. (2015). Multifunctional effect of human serum albumin reduces Alzheimer’s disease related pathologies in the 3xTg mouse model. Journal of Alzheimer’s Disease, 50(1), 175–188.

    Article  Google Scholar 

  9. Khan, J. M., Chaturvedi, S. K., & Khan, R. H. (2013). Elucidating the mode of action of urea on mammalian serum albumins and protective effect of sodium dodecyl sulfate. Biochemical and Biophysical Research Communications, 441, 681–688.

    Article  CAS  Google Scholar 

  10. Khan, J. M., Abdulrehman, S. A., Zaidi, F. K., Gourinath, S., & Khan, R. H. (2014). Hydrophobicity alone can not trigger aggregation in protonated mammalian serum albumins. Physical Chemistry Chemical Physics., 16, 5150–5161.

    Article  CAS  Google Scholar 

  11. Sen, P., Khan, M. M., Equbal, A., Ahmad, E., & Khan, R. H. (2013). At very low concentrations known chaotropes act as kosmotropes for the N and B isoforms of human serum albumin. Biochemistry and Cell Biology, 91(2), 72–78.

    Article  CAS  Google Scholar 

  12. Takić, M. M., Jovanović, V. B., Pavićević, I. D., Uzelac, T. N., Aćimović, J. M., Ristić-Medić, D. K., & Mandić, L. M. (2016). Binding of enterolactone and enterodiol to human serum albumin: increase of cysteine-34 thiol group reactivity. Food & Function, 7(2), 1217–1226.

    Article  Google Scholar 

  13. Rudra, S., Dasmandal, S., Patra, C., Kundu, A., & Mahapatra, A. (2016). Binding affinities of Schiff base Fe(II) complex with BSA and calf-thymus DNA: spectroscopic investigations and molecular docking analysis. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 13, 84–94.

    Article  Google Scholar 

  14. Peters, T. (1996). All about albumin: biochemistry, genetics, and medical applications. San Diego: Academic Press.

    Google Scholar 

  15. Poulin, P., & Haddad, S. (2015). Albumin and uptake of drugs in cells: additional validation exercises of a recently published equation that quantifies the albumin-facilitated uptake mechanism(s) in physiologically based pharmacokinetic and pharmacodynamic modeling research. Journal of Pharmaceutical Sciences, 104(12), 4448–4458.

    Article  CAS  Google Scholar 

  16. Curry, S., Mandelkow, H., Brick, P., & Franks, N. (1998). Crystal structure of human serum albumin complexed with fatty acid reveals an asymmetric distribution of binding sites. Nature Structural & Molecular Biology, 5, 827–835.

    Article  CAS  Google Scholar 

  17. Raskin, P. (2007). Efficacy and safety of insulin detemir. Endocrinology Metabolism Clinics of North America., 36, 21–32.

    Article  CAS  Google Scholar 

  18. Kurtzhals, P., Havelund, S., Jonassen, I., Kiehr, B., Larsen, U. D., Ribel, U., & Markussen, J. (1995). Albumin binding of insulins acylated with fatty acids: characterization of the ligand-protein interaction and correlation between binding affinity and timing of the insulin effect in vivo. Biochemical Journal, 312, 725–731.

    Article  CAS  Google Scholar 

  19. Edwards, F. B., Rombauer, R. B., & Campbell, B. J. (1969). Thio-disulfife interchange reaction between serum albumin and disulfides. Biochimica et Biophysica Acta, 194, 234–245.

    Article  CAS  Google Scholar 

  20. Sugio, S., Kashima, A., Mochizuki, S., Noda, M., & Kobayashi, K. (1999). Crystal structure of human serum albumin at 2.5 a resolution. Protein Engineering, 12, 439–446.

    Article  CAS  Google Scholar 

  21. Guex, N., & Peitsch, M. C. (1997). SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modeling. Electrophoresis, 18, 2714–2723.

    Article  CAS  Google Scholar 

  22. Smith, G. D., Ciszak, E., Magrum, L. A., Pangborn, W. A., & Blessing, R. H. (2000). R6 hexameric insulin complexed with m-cresol or resorcinol. Acta Crystallographica Section D, 56, 1541–1548.

    Article  CAS  Google Scholar 

  23. Pettersen, E. F., Goddard, T. D., Huang, C. C., Couch, G. S., Greenblatt, D. M., Meng, E. C., & Ferrin, T. E. (2004). UCSF chimera—a visualization system for exploratory research and analysis. Journal of Computational Chemistry, 25, 1605–1612.

    Article  CAS  Google Scholar 

  24. Schneidman-Duhovny, D., Inbar, Y., Nussinov, R., & Wolfson, H. J. (2005). PatchDock and SymmDock: servers for rigid and symmetric docking. Nucleic Acids Research, 33, W363–W367.

    Article  CAS  Google Scholar 

  25. Lakowicz, J. R. (2006). Principles of fluorescence spectroscopy (3rd ed.). New York: Springer.

    Book  Google Scholar 

  26. Kelly, S. M., Jess, T. J., & Price, N. C. (2005). How to study proteins by circular dichroism. Biochimica et Biophysica Acta, 1751, 119–139.

    Article  CAS  Google Scholar 

  27. Corbin, J., Methlot, N., Wang, H. H., Baenziger, J. E., & Blanton, M. P. (1998). Secondary structure analysis of individual transmembrane segments of the nicotinic acetylcholine receptor by circular dichroism and fourier transform infrared spectroscopy. The Journal of Biological Chemistry, 273, 771–777.

    Article  CAS  Google Scholar 

  28. Mendez, D. L., Jensen, R. A., McElroy, L. A., Pena, J. M., & Esquerra, R. M. (2005). The effect of non-enzymatic glycation on the unfolding of human serum albumin. Archives of Biochemistry and Biophysics, 444, 92–99.

    Article  CAS  Google Scholar 

  29. Ch Pulla Reddy, A., Sudharshan, E., Appu RaoB, A. G., & Lokesh, R. (1999). Interaction of curcumin with human serum albumin—a spectroscopic study. Lipids, 34, 1025–1029.

    Article  Google Scholar 

  30. Mohammadi, F., Bordbar, A. K., Divsalar, A., Mohammadi, K., & Saboury, A. A. (2009). Analysis of binding interaction of curcumin and diacetylcurcumin with human and bovine serum albumin using fluorescence and circular dichroism spectroscopy. Protein Journal, 28, 189–196.

    Article  CAS  Google Scholar 

  31. (2001) Protein–ligand interactions: structure and spectroscopy. S. E. Harding and B. Z. Chowdhry (Eds.), Oxford University Press.

  32. Hao, S. Z., Liu, S. D., Wang, X. H., Cui, X. J., & Guo, L. P. (2009). Study of the interaction of Na9[SbW9O33]·19.5H2O with bovine serum albumin: spectroscopic and voltammetric methods. Journal of Luminescence, 129, 1320–1325.

    Article  CAS  Google Scholar 

  33. Kelly, S. M., & Price, N. C. (1997). The application of circular dichroism to studies of protein folding and unfolding. Biochimica et Biophysica Acta, 1338, 161–185.

    Article  CAS  Google Scholar 

  34. Togashi, D. M., & Ryder, A. G. (2008). A fluorescence analysis of ANS bound to bovine serum albumin: binding properties revisited by using energy transfer. Journal of Fluorescence, 18, 519–526.

    Article  CAS  Google Scholar 

  35. Perozzo, R., Folkers, G., & Scapozza, L. (2004). Thermodynamics of protein-ligand interactions: history, presence, and future aspects. Journal of Receptors and Signal Transduction, 24, 1–52.

    Article  CAS  Google Scholar 

  36. Gibbs, J. W. (1875). On the equilibrium of heterogeneous substances. Transactions of the Connecticut Academy of Arts and Sciences, 3, 108–248 343–524.

    Google Scholar 

  37. Gibbs, J. W., & Willard, J. (1960). Elementary principles in statistical mechanics, developed with especial reference to the rational foundation of thermodynamics. New York: Dover Publications.

    Google Scholar 

  38. Chen, C. C., Chen, S. T., & Hsieh, J. F. (2015). Proteomic analysis of polysaccharide-milk protein interactions induced by chitosan. Molecules, 20, 7737–7749.

    Article  CAS  Google Scholar 

  39. Ross, P. D., & Subramanian, S. (1981). Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry, 20, 3096–3102.

    Article  CAS  Google Scholar 

  40. Ahmad, E., Sen, P., & Khan, R. H. (2011). Structural stability as a probe for molecular evolution of homologous albumins studied by spectroscopy and bioinformatics. Cell Biochemistry and Biophysics, 61, 313–325.

    Article  CAS  Google Scholar 

  41. Tayyab, S., Sharma, N., & Khan, M. M. (2000). Biochemical and Biophysical Research Communications, 277, 83–88.

    Article  CAS  Google Scholar 

  42. Agudelo, D., Bourassa, P., Bruneau, J., Bérubé, G., Asselin, E., & Tajmir-Riahi, H. A. (2012). Probing the binding sites of antibiotic drugs doxorubicin and N-(trifluoroacetyl) doxorubicin with human and bovine serum albumins. PloS One, 7, e43814.

    Article  CAS  Google Scholar 

  43. Kabir, M. Z., Mukarram, A. K., Mohamad, S. B., Alias, Z., & Tayyab, S. (2016). Characterization of the binding of an anticancer drug, lapatinib to human serum albumin. Journal of Photochemistry and Photobiology., 13(160), 229–239.

    Article  Google Scholar 

  44. Hein, K. L., Kragh-Hansen, U., Morth, J. P., Jeppesen, M. D., Otzen, D., Møller, J. V., & Nissen, P. (2010). Crystallographic analysis reveals a unique lidocaine binding site on human serum albumin. Journal of Structural Biology, 171(3), 353–360.

    Article  CAS  Google Scholar 

  45. Duggirala, S., Nankar, R. P., Rajendran, S., & Doble, M. (2014). Phytochemicals as inhibitors of bacterial cell division protein FtsZ: coumarins are promising candidates. Applied Biochemistry and Biotechnology, 174, 283.

    Article  CAS  Google Scholar 

  46. Chikan, N. A., Bhavaniprasad, V., Anbarasu, K., Shabir, N., & Patel, T. N. (2013). From natural products to drugs for Epimutation computer-aided drug design. Applied Biochemistry and Biotechnology, 170, 164.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sadaf Fatima.

Additional information

The original version of this article was revised: There's an error in one of the author's name. C. George Priyadoss was incorrectly captured as C. George Priya Doss.

An erratum to this article is available at http://dx.doi.org/10.1007/s12010-016-2351-x.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fatima, S., Sen, P., Sneha, P. et al. Hydrophobic Interaction Between Domain I of Albumin and B Chain of Detemir May Support Myristate-Dependent Detemir-Albumin Binding. Appl Biochem Biotechnol 182, 82–96 (2017). https://doi.org/10.1007/s12010-016-2312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2312-4

Keywords

Navigation