Skip to main content
Log in

Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Docosapentaenoic acid/docosahexaenoic acid ratio (DPA/DHA ratio) in Schizochytrium was relatively stable. But ideally the ratio of DPA/DHA will vary according to the desired end use. This study reports several ways of modulating the DPA/DHA ratio. Incubation times changed the DPA/DHA ratio, and changes in this ratio were associated with the variations in the saturated fatty acid (SFAs) content. Propionic acid sharply increased the SFAs content in lipids, dramatically decreased the even-chain SFAs content, and reduced the DPA/DHA ratio. Pentanoic acid (C5:0) and heptanoic acid (C7:0) had similar effects as propionic acid, whereas butyric acid (C4:0), hexanoic acid (C6:0), and octanoic acid (C8:0) did not change the fatty acid profile and the DPA/DHA ratio. Transcription analyses show that β-oxidation might be responsible for this phenomenon. Iodoacetamide upregulated polyunsaturated fatty acid (PUFA) synthase genes, reduced the DHA content, and improved the DPA content, causing the DPA/DHA ratio to increase. These results present new insights into the regulation of the DPA/DHA ratio.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

DHA:

Docosahexaenoic acid

DPA:

Docosapentaenoic acid

EPA:

Eicosapentaenoic acid

even-SFA:

Even-carbon saturated fatty acid

FAME:

Fatty acid methyl ester

FAS:

Fatty acid synthase

KS:

3-Ketoacyl synthase

MCAD:

Medium-chain acyl-CoA dehydrogenase

odd-SFA:

Odd-carbon saturated fatty acid

PKS:

Polyketide synthase

PUFA:

Polyunsaturated fatty acid

SCAD:

Short-chain acyl-CoA dehydrogenase

SFA:

Saturated fatty acid

References

  1. Chen, W., Wang, H., Zhang, K., Gao, F., Chen, S., & Li, D. (2016). Physicochemical properties and storage stability of microencapsulated DHA-rich oil with different wall materials. Applied Biochemistry and Biotechnology, 179, 1129–1142.

    Article  CAS  Google Scholar 

  2. Chi, Z., Liu, Y., Frear, C., & Chen, S. (2009). Study of a two-stage growth of DHA-producing marine algae Schizochytrium limacinum SR21 with shifting dissolved oxygen level. Applied Microbiology and Biotechnology, 81, 1141–1148.

    Article  CAS  Google Scholar 

  3. Simopoulos, A. P. (2008). The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Experimental Biology and Medicine, 233, 674–688.

    Article  CAS  Google Scholar 

  4. Mendes, A., Reis, A., Vasconcelos, R., Guerra, P., & Lopes da Silva, T. (2009). Crypthecodinium cohnii with emphasis on DHA production: a review. Journal of Applied Phycology, 21, 199–214.

    Article  Google Scholar 

  5. Nauroth, J. M., Liu, Y. C., Van Elswyk, M., Bell, R., Hall, E. B., Chung, G., & Arterburn, L. M. (2010). Docosahexaenoic acid (DHA) and docosapentaenoic acid (DPAn-6) algal oils reduce inflammatory mediators in human peripheral mononuclear cells in vitro and paw edema in vivo. Lipids, 45, 375–384.

    Article  CAS  Google Scholar 

  6. Green, K. N., Martinez-Coria, H., Khashwji, H., Hall, E. B., Yurko-Mauro, K. A., Ellis, L., & LaFerla, F. M. (2007). Dietary docosahexaenoic acid and docosapentaenoic acid ameliorate amyloid-β and tau pathology via a mechanism involving presenilin 1 levels. The Journal of Neuroscience, 27, 4385–4395.

    Article  CAS  Google Scholar 

  7. Parrish, C. C., Whiticar, M., & Puvanendran, V. (2007). Is ω6 docosapentaenoic acid an essential fatty acid during early ontogeny in marine fauna? Limnology and Oceanography, 52, 476–479.

    Article  CAS  Google Scholar 

  8. Milke, L. M., Bricelj, V. M., & Parrish, C. C. (2006). Comparison of early life history stages of the bay scallop, Argopecten irradians: effects of microalgal diets on growth and biochemical composition. Aquaculture, 260, 272–289.

    Article  CAS  Google Scholar 

  9. Nakahara, T., Yokochi, T., Higashihara, T., Tanaka, S., Yaguchi, T., & Honda, D. (1996). Production of docosahexaenoic and docosapentaenoic acids by Schizochytrium sp. isolated from Yap Islands. Journal of the American Oil Chemists’ Society, 73, 1421–1426.

    Article  CAS  Google Scholar 

  10. Ren, L., Zhuang, X., Chen, S., Ji, X., & Huang, H. (2015). Introduction of ω-3 desaturase obviously changed the fatty acid profile and sterol content of Schizochytrium sp. Journal of Agricultural and Food Chemistry, 63, 9770–9776.

    Article  CAS  Google Scholar 

  11. Kumon, Y., Yokoyama, R., Yokochi, T., Honda, D., & Nakahara, T. (2003). A new labyrinthulid isolate, which solely produces n-6 docosapentaenoic acid. Applied Microbiology and Biotechnology, 63, 22–28.

    Article  CAS  Google Scholar 

  12. Lippmeier, J. C., Crawford, K., Owen, C., Rivas, A., Metz, J., & Apt, K. (2009). Characterization of both polyunsaturated fatty acid biosynthetic pathways in Schizochytrium sp. Lipids, 44, 621–630.

    Article  CAS  Google Scholar 

  13. Metz, J. G., Roessler, P., Facciotti, D., Levering, C., Dittrich, F., Lassner, M., Valentine, R., Lardizabal, K., Domergue, F., Yamada, A., Yazawa, K., Knauf, V., & Browse, J. (2001). Production of polyunsaturated fatty acids by polyketide synthases in both prokaryotes and eukaryotes. Science, 293, 290–293.

    Article  CAS  Google Scholar 

  14. Ratledge, C. (2004). Fatty acid biosynthesis in microorganisms being used for single cell oil production. Biochimie, 86, 807–815.

    Article  CAS  Google Scholar 

  15. Ren, L., Huang, H., Xiao, A., Lian, M., Jin, L., & Ji, X. (2009). Enhanced docosahexaenoic acid production by reinforcing acetyl-CoA and NADPH supply in Schizochytrium sp. HX-308. Bioprocess and Biosystems Engineering, 32, 837–843.

    Article  CAS  Google Scholar 

  16. Song, X., Tan, Y., Liu, Y., Zhang, J., Liu, G., Feng, Y., & Cui, Q. (2013). Different impacts of short-chain fatty acids on saturated and polyunsaturated fatty acid biosynthesis in Aurantiochytrium sp. SD116. Journal of Agricultural and Food Chemistry, 61, 9876–9881.

    Article  CAS  Google Scholar 

  17. Chang, G., Luo, Z., Gu, S., Wu, Q., Chang, M., & Wang, X. (2013). Fatty acid shifts and metabolic activity changes of Schizochytrium sp. S31 cultured on glycerol. Bioresource Technology, 142, 255–260.

    Article  CAS  Google Scholar 

  18. Xiong, X., Lian, J., Yu, X., Garcia-Perez, M., & Chen, S. (2016). Engineering levoglucosan metabolic pathway in Rhodococcus jostii RHA1 for lipid production. Journal of Industrial Microbiology & Biotechnology, 43, 1551–1560.

    Article  CAS  Google Scholar 

  19. He, R., Ma, L., Li, C., Jia, W., Li, D., Zhang, D., & Chen, S. (2014). Trpac1, a pH response transcription regulator, is involved in cellulase gene expression in Trichoderma reesei. Enzyme and Microbial Technology, 67, 17–26.

    Article  CAS  Google Scholar 

  20. Bartlett, K., & Eaton, S. (2004). Mitochondrial β-oxidation. European Journal of Biochemistry, 271, 462–469.

    Article  CAS  Google Scholar 

  21. Roediger, W. E. W., & Nance, S. (1990). Selective reduction of fatty acid oxidation in colonocytes: correlation with ulcerative colitis. Lipids, 25, 646–652.

    Article  CAS  Google Scholar 

  22. Watanabe, C. M., Wilson, D., Linz, J. E., & Townsend, C. A. (1996). Demonstration of the catalytic roles and evidence for the physical association of type I fatty acid synthases and a polyketide synthase in the biosynthesis of aflatoxin B1. Chemistry & Biology, 3, 463–469.

    Article  CAS  Google Scholar 

  23. Sun, X., Zhou, X., Cai, M., Tao, K., & Zhang, Y. (2009). Identified biosynthetic pathway of aspergiolide a and a novel strategy to increase its production in a marine-derived fungus Aspergillus glaucus by feeding of biosynthetic precursors and inhibitors simultaneously. Bioresource Technology, 100, 4244–4251.

    Article  CAS  Google Scholar 

  24. Sun, L., Ren, L., Zhuang, X., Ji, X., Yan, J., & Huang, H. (2014). Differential effects of nutrient limitations on biochemical constituents and docosahexaenoic acid production of Schizochytrium sp. Bioresource Technology, 159, 199–206.

    Article  CAS  Google Scholar 

  25. Zhang, Y., Min, Q., Xu, J., Zhang, K., Chen, S., Wang, H., & Li, D. (2016). Effect of malate on docosahexaenoic acid production from Schizochytrium sp. B4D1. Electronic Journal of Biotechnology, 19, 56–60.

    Article  CAS  Google Scholar 

  26. Hauvermale, A., Kuner, J., Rosenzweig, B., Guerra, D., Diltz, S., & Metz, J. G. (2006). Fatty acid production in Schizochytrium sp.: involvement of a polyunsaturated fatty acid synthase and a type I fatty acid synthase. Lipids, 41, 739–747.

    Article  CAS  Google Scholar 

  27. Zhang, W., Yu, L., Leng, W., Wang, X., Wang, L., Deng, X., Yang, J., Liu, T., Peng, J., Wang, J., Li, S., & Jin, Q. (2007). cDNA microarray analysis of the expression profiles of Trichophyton rubrum in response to novel synthetic fatty acid synthase inhibitor PHS11A. Fungal Genetics and Biology, 44, 1252–1261.

    Article  CAS  Google Scholar 

  28. Yu, L., Zhang, W., Liu, T., Wang, X., Peng, J., Li, S., & Jin, Q. (2007). Global gene expression of Trichophyton rubrum in response to PH11B, a novel fatty acid synthase inhibitor. Journal of Applied Microbiology, 103, 2346–2352.

    Article  CAS  Google Scholar 

  29. Sthapit, B., Oh, T.-J., Lamichhane, R., Liou, K., Lee, H. C., Kim, C.-G., & Sohng, J. K. (2004). Neocarzinostatin naphthoate synthase: an unique iterative type I PKS from neocarzinostatin producer Streptomyces carzinostaticus. FEBS Letters, 566, 201–206.

    Article  CAS  Google Scholar 

  30. Brown, D., Adams, T., & Keller, N. (1996). Aspergillus has distinct fatty acid synthases for primary and secondary metabolism. Proceedings of the National Academy of Sciences, 93, 14873–14877.

    Article  CAS  Google Scholar 

  31. Wallis, J. G., Watts, J. L., & Browse, J. (2002). Polyunsaturated fatty acid synthesis: what will they think of next? Trends in Biochemical Sciences, 27, 467–473.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Financial support was provided by the Key Program for International S&T Cooperation Projects of China (2014DFA61040), the Hi-Tech Research and Development Program (863) of China (2014AA021701), the Science and Technology Support Key Project of Tianjin (11ZCZDSY08900), and the Youth Innovation Promotion Association CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Demao Li.

Additional information

Ke Zhang and Huidong Li contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, K., Li, H., Chen, W. et al. Regulation of the Docosapentaenoic Acid/Docosahexaenoic Acid Ratio (DPA/DHA Ratio) in Schizochytrium limacinum B4D1. Appl Biochem Biotechnol 182, 67–81 (2017). https://doi.org/10.1007/s12010-016-2311-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2311-5

Keywords

Navigation