Skip to main content
Log in

Collagen Hydrolysates of Skin Shavings Prepared by Enzymatic Hydrolysis as a Natural Flocculant and Their Flocculating Property

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A series of collagen hydrolysates (CHs) were prepared from pigskin shavings by using pepsin (PCH), trypsin (TCH), Alcalase (ACH), HCl (HCH), and NaOH (NCH). Their physicochemical properties, including degree of collagen hydrolysis, molecular weight distribution, electric charge, and microstructure, were investigated, and their flocculation performance was evaluated in a kaolin suspension, at varied pHs and concentrations. PCH exhibited high flocculation capability under acidic and neutral conditions, and its efficiency for removing suspended particles was approximately 80% at a concentration of 0.05 g/L. TCH, ACH, HCH, and NCH showed almost no flocculation capability. The flocculation capability of PCH could be mainly due to a combination of optimal molecular weight distribution and electric charge. This study could provide an environment-friendly natural flocculant and also proposes a promising approach for the reuse of collagen wastes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim, S. H., Park, H. S., Lee, O. J., Chao, J. R., Park, H. J., Lee, J. M., Ju, H. W., Moon, B. M., Park, Y. R., Song, J. E., Khang, G., & Park, C. H. (2016). Fabrication of duck’s feet collagen-silk hybrid biomaterial for tissue engineering. International Journal of Biological Macromolecules, 85, 442–450.

    Article  CAS  Google Scholar 

  2. Senaratne, L. S., Park, P. J., & Kim, S. K. (2006). Isolation and characterization of collagen from brown backed toadfish (Lagocephalus gloveri) skin. Bioresource Technology, 97, 191–197.

    Article  CAS  Google Scholar 

  3. Kezwoń, A., Chromińska, I., Frączyk, T., & Wojciechowski, K. (2016). Effect of enzymatic hydrolysis on surface activity and surface rheology of type I collagen. Colloids and Surface B: Biointerfaces, 137, 60–69.

    Article  Google Scholar 

  4. Bet, M. R., Goissis, G., & Lacerda, C. A. (2001). Characterization of polyanionic collagen prepared by selective hydrolysis of asparagine and glutamine carboxyamide side chains. Biomacromolecules, 2, 1074–1079.

    Article  CAS  Google Scholar 

  5. Ficai, A., Albu, M. G., Birsan, M., Sonmez, M., Ficai, D., Trandafir, V., & Andronescu, E. (2013). Collagen hydrolysate based collagen/hydroxyapatite composite materials. Journal of Molecular Structure, 1037, 154–159.

    Article  CAS  Google Scholar 

  6. Chi, Y. L., Zhang, Q. X., Liao, X. P., Zhou, J., & Shi, B. (2014). Physicochemical properties and surface activities of collagen hydrolysate-based surfactants with varied oleoyl group grafting degree. Industrial & Engineering Chemistry Research, 53, 8501–8508.

    Article  CAS  Google Scholar 

  7. Song, E., Kim, S. Y., Chun, T., Byun, H. J., & Lee, Y. M. (2006). Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials, 27, 2951–2961.

    Article  CAS  Google Scholar 

  8. Piazza, G. J., & Garcia, R. A. (2010). Proteins and peptides as renewable flocculants. Bioresource Technology, 101, 5759–5766.

    Article  CAS  Google Scholar 

  9. Seki, H., Maruyama, H., & Shoji, Y. (2010). Flocculation of diatomite by a soy protein-based bioflocculant. Biochemical Engineering Journal, 51, 14–18.

    Article  CAS  Google Scholar 

  10. Tavano, O. L. (2013). Protein hydrolysis using proteases: an important tool for food biotechnology. Journal of Molecular Catalysis B: Enzymatic, 90, 1–11.

    Article  CAS  Google Scholar 

  11. Morimura, S., Nagata, H., Uemura, Y., Fahmi, A., Shigematsu, T., & Kida, K. (2002). Development of an effective process from livestock and for utilization of collagen fish waste. Process Biochemistry, 37, 1403–1412.

    Article  CAS  Google Scholar 

  12. Nagai, T., & Suzuki, N. (2000). Isolation of collagen from fish waste material—skin, bone and fins. Food Chemistry, 68, 277–281.

    Article  CAS  Google Scholar 

  13. Chi, Y. L., Cui, M., Cui, X. J., Zhang, W. H., Liao, X. P., & Shi, B. (2012). Enzymatic hydrolysis of skin shavings for preparation of collagen hydrolysates with specified molecular weight distribution. Journal of the Society of Leather Technologists and Chemists, 96, 16–20.

    CAS  Google Scholar 

  14. Kembhavi, A. A., Kulkarni, A., & Pant, A. (1993). Salt-tolerant and thermostable alkaline protease from Bacillus subtilis NCIM NO. 64. Applied Biochemistry and Biotechnology, 38, 83–92.

    Article  CAS  Google Scholar 

  15. Powell, T. H., Hunt, M. C., & Dikeman, M. E. (2000). Enzymatic assay to determine collagen thermal denaturation and solubilization. Meat Science, 54, 307–311.

    Article  CAS  Google Scholar 

  16. Piazza, G. J., & Garcia, R. A. (2010). Meat & bone meal extract and gelatin as renewable flocculants. Bioresource Technology, 101, 781–787.

    Article  CAS  Google Scholar 

  17. Nielsen, P. M., Petersen, D., & Dambmann, C. (2001). Improved method for determining food protein degree of hydrolysis. Journal of Food Science, 66, 642–646.

    Article  CAS  Google Scholar 

  18. Nalinanon, S., Benjakul, S., Visessanguan, W., & Kishimura, H. (2007). Use of pepsin for collagen extraction from the skin of bigeye snapper (Priacanthus tayenus). Food Chemistry, 104, 593–601.

    Article  CAS  Google Scholar 

  19. Leiros, H. K., Brandsdal, B. O., Andersen, O. A., Os, V., Leiros, I., Helland, R., Otlewski, J., Willassen, N. P., & Smalås, A. O. (2004). Trypsin specificity as elucidated by LIE calculations, X-ray structures, and association constant measurements. Protein Science, 13, 1056–1070.

    Article  CAS  Google Scholar 

  20. Huber, R., & Bode, W. (1978). Structural basis of the activation and action of trypsin. Accounts of Chemical Research, 11, 114–122.

    Article  CAS  Google Scholar 

  21. Ikoma, T., Kobayashi, H., Tanaka, J., Walsh, D., & Mann, S. (2003). Physical properties of type I collagen extracted from fish scales of Pagrus major and Oreochromis niloticas. International Journal of Biological Macromolecules, 32, 199–204.

    Article  CAS  Google Scholar 

  22. Liu, X. H., Dan, N. H., & Dan, W. H. (2016). Preparation and characterization of an advanced collagen aggregate from porcine acellular dermal matrix. International Journal of Biological Macromolecules, 88, 179–188.

    Article  CAS  Google Scholar 

  23. Adamson, N. J., & Reynolds, E. C. (1996). Characterization of casein phosphopeptides prepared using alcalase: determination of enzyme specificity. Enzyme and Microbial Technology, 19, 202–207.

    Article  CAS  Google Scholar 

  24. Kadler, K. E., Baldock, C., Bella, J., & Boot-Handford, R. P. (2007). Collagens at a glance. Journal of Cell Science, 120, 1955–1958.

    Article  CAS  Google Scholar 

  25. Ojha, K. S., Alvarez, C., Kumar, P., O'Donnell, C. P., & Tiwari, B. K. (2016). Effect of enzymatic hydrolysis on the production of free amino acids from boarfish (Capros aper) using second order polynomial regression models. LWT - Food Science and Technology, 68, 470–476.

    Article  CAS  Google Scholar 

  26. Righetti, P. G. (2004). Determination of the isoelectric point of proteins by capillary isoelectric focusing. Journal of Chromatography A, 1037, 491–499.

    Article  CAS  Google Scholar 

  27. Manzanilla-Granados, H. M., & Lozada-Cassou, M. (2013). Modified colloidal primitive model as a homogeneous surface charge distribution: ζ-potential. The Journal of Physical Chemistry B, 117, 11812–11829.

    Article  CAS  Google Scholar 

  28. Kaewdang, O., Benjakul, S., Kaewmanee, T., & Kishimura, H. (2014). Characteristics of collagens from the swim bladders of yellowfin tuna (Thunnus albacares). Food Chemistry, 155, 264–270.

    Article  CAS  Google Scholar 

  29. Aljuboori, A. H., Idris, A., Al-joubory, H. H., Uemura, Y., & Ibn Abubakar, B. S. (2015). Flocculation behavior and mechanism of bioflocculant produced by Aspergillus flavus. Journal of Environmental Management, 150, 466–471.

    Article  CAS  Google Scholar 

  30. Runkana, V., Somasundaran, P., & Kapur, P. C. (2004). Mathematical modeling of polymer-induced flocculation by charge neutralization. Journal of Colloid and Interface Science, 270, 347–358.

    Article  CAS  Google Scholar 

  31. Renault, F., Sancey, B., Badot, P. M., & Crini, G. (2009). Chitosan for coagulation/flocculation processes—an eco-friendly approach. European Polymer Journal, 45, 1337–1348.

    Article  CAS  Google Scholar 

  32. Ozkan, A., & Yekeler, M. (2004). Coagulation and flocculation characteristics of celestite with different inorganic salts and polymers. Chemical Engineering and Processing, 43, 873–879.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was financially supported by the Specialized Research Fund for the Doctoral Program of Higher Education of China (no. 20130181120094), the National Natural Science Foundation of China (no. 31601442, no. 31371775), and the Science and Technology Support Program of Sichuan Province (no. 2016NZ0007).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanlong Chi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, R., Yao, K., Zhang, Q. et al. Collagen Hydrolysates of Skin Shavings Prepared by Enzymatic Hydrolysis as a Natural Flocculant and Their Flocculating Property. Appl Biochem Biotechnol 182, 55–66 (2017). https://doi.org/10.1007/s12010-016-2310-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2310-6

Keywords

Navigation