Skip to main content
Log in

Population Structure Analysis and Selection of Core Set among Common Bean Genotypes from Jammu and Kashmir, India

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Understanding the genetic diversity of a crop is useful for its effective utilization in breeding programmes. For better understanding of the genetic variability in common bean, the first and foremost step is to study its genetic diversity. In the present investigation, 138 genotypes of common bean collected from various regions of Jammu and Kashmir, India, representing major common bean growing areas of this region, were evaluated using 23 SSRs. These SSRs were found highly polymorphic and possess high values for various parameters indicating their high discriminatory power. The average PIC value observed was 0.692, with 0.730 as average gene diversity value, and 0.267 as heterozygosity. Twenty-three SSRs produced a total of 251 alleles. The dendrogram generated with un-weighted neighbour joining cluster analysis grouped genotypes into three main clusters with various degrees of sub-clustering within the clusters. The model-based STRUCTURE analysis using 23 SSR markers identified a population with 3 sub-populations which corresponds to distance-based groupings with average F ST value and expected heterozygosity of 0.1497 and 0.6696, respectively, within the sub-population, as such high level of genetic diversity was observed within the population. Further, Core Hunter II was used to identify a core set of 96 diverse genotypes. This core set of diverse 96 genotypes is a potential resource for association mapping studies and can be used by breeders as a material to make desirable genetic crosses to generate elite varieties for the fulfilling global market needs. These findings have further implications in common bean breeding as well as conservation programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Beebe, S., Gonzalez, A. V., & Rengifo, J. (2000). Research on trace minerals in the common bean. Food Nutrition Bulletin, 21, 387–391.

    Article  Google Scholar 

  2. Svetleva, D., Pereira, G., Carlier, J., Cabrita, L., Leitao, J., & Genchev, D. (2006). Molecular characterization of Phaseolus vulgaris L. Genotypes included in Bulgarian collection by ISSR and AFLP analyses. Scientia Horticulturae, 109, 198–206.

    Article  CAS  Google Scholar 

  3. Nyombaire, G., Siddiq, M., & Dolan, K. (2007). Effect of soaking and cooking on the oligosaccharides and lectins of red kidney beans (Phaseolus vulgaris L.). Bean Improv Coop Ann Rep, 50, 31–32.

    Google Scholar 

  4. Kaplan, L., & Lynch, T. F. Phaseolus (Fabaceae) in archaeology: AMS radiocarbon dates and their significance for pre-Colombian agriculture. Economic Botany, 53(3), 261–272.

  5. Wortmann, C.S., Brink, M., Belay, G. (2006) Phaseolus vulgaris L. (Common bean). Record from PROTA4U. In PROTA (Plant Resources of Tropical Africa / Ressources végétales de l’Afrique tropicale) (Eds.), Wageningen, Netherlands.

  6. McClean, P. E., Terpstra, J., McConnell, M., White, C., Lee, R., & Mamidi, S. (2012). Population structure and genetic differentiation among the USDA common bean (Phaseolus vulgaris L.) core collection. Genetic Resource and Crop Evolution, 59, 499–515.

    Article  Google Scholar 

  7. Kaplan, L. (1981). What is the origin of the common bean? Economic Botany, 35, 240–254.

    Article  Google Scholar 

  8. Singh, S. P., Nodari, R., & Gepts, P. (1991a). Genetic diversity in cultivated common bean. 1. Allozymes. Crop Science, 31, 19–23.

    Article  CAS  Google Scholar 

  9. Galvan, M. Z., Mene’ndez-Sevillano, M. C., De Ron, A. M., Santalla, M., & Balatti, P. A. (2006). Genetic diversity among wild common beans from northwestern Argentina based on morpho agronomic and RAPD data. Genetic Resources and Crop Evolution, 53, 891–900.

    Article  CAS  Google Scholar 

  10. Gepts, P., & Bliss, F. A. (1985). F1-hybrid weakness in the common bean—differential geographic origin suggests two gene pools in cultivated bean germplasm. Journal of Heredity, 76, 447–450.

    Article  Google Scholar 

  11. Gepts, P., Osborn, T. C., Rashka, K., & Bliss, F. A. (1986). Phaseolin-protein variability in wild forms and landraces of the common bean (Phaseolus vulgaris). Evidence for multiple centers of domestication. Economic Botany, 40, 451–468.

    Article  CAS  Google Scholar 

  12. Koenig, R., & Gepts, P. (1989). Allozyme diversity in wild Phaseolus vulgaris: further evidence for two major centers of genetic diversity. Theoretical and Applied Genetics, 78, 809–817.

    Article  CAS  Google Scholar 

  13. Becerra, V., & Gepts, P. (1994). RFLP diversity of common bean (Phaseolus vulgaris L.) in its centres of origin. Genome, 37, 256–263.

    Article  Google Scholar 

  14. Me’tais, I., Aubry, C., Hamon, B., Jalouzot, R., & Peltier, D. (2000). Description and analysis of genetic diversity between commercial bean lines (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 101, 1207–1214.

    Article  Google Scholar 

  15. Caicedo, A. L., Gaitan, E., Duque, M. C., Torochica, O., Debouck, D. G., & Thome, J. (1999). AFLP fingerprinting of Phaseolus lunatus L. And related wild species from S. America. Crop Science, 39, 1497–1507.

    Article  Google Scholar 

  16. Fabio, L. M., Sergio, E., Lee, T. S. G., & Flipe, G. G. (2003). Genetic relationships and diversity among Brazilian cultivars and land races of common beans (Phaseolus vulgaris L.) revealed by AFLP markers. Genetic Resources and Crop Evolution, 50, 887–893.

    Article  Google Scholar 

  17. Pallottini, L., Garcia, E., Kami, J., Barcaccia, G., & Gepts, P. (2004). The genetic anatomy of a patented yellow bean. Crop Science, 44, 968–977.

    Article  CAS  Google Scholar 

  18. Rosales-Serna, R., Hernandez-Delgado, S., Gonzalez-Paz, M., Acosta-Gallegos, J. A., & Mayek-Perez, N. (2005). Genetic relationships and diversity revealed by AFLP markers in Mexican common bean bred cultivars. Crop Science, 45, 1951–1957.

    Article  CAS  Google Scholar 

  19. Duarte, M. J., Bosco dos Santos, J., & Cunha Melo, L. (1999). Genetic divergence among common bean cultivars from different races based on RAPD markers. Genetics and Moecular Biology, 22, 419–426.

    Article  Google Scholar 

  20. Beebe, S., Skroch, P. W., Tohme, J., Duque, M. C., Pedraza, F., & Nienhuis, J. (2000). Structure of genetic diversity among J., common bean landraces of middle American origin based on correspondence analysis of RAPD. Crop Science, 40, 264–273.

    Article  Google Scholar 

  21. Maciel, F., Gerald, L. T. S., & Echeverrigaray, S. (2001). Random amplified polymorphic DNA (RAPD) markers variability among cultivars and landraces of common bean (P. vulgaris L.) of South Brazil. Euphytica, 120, 257–263.

    Article  CAS  Google Scholar 

  22. Tiwari, M., Singh, N. K., Rathore, M., & Kumar, N. (2005). RAPD markers in the analysis of genetic diversity among common bean germplasm from central Himalaya. Genetic Resources and Crop Evolution, 52, 315–324.

    Article  CAS  Google Scholar 

  23. Blair, M. W., Giraldo, M. C., Buendia, H. F., Tovar, E., Duque, M. C., & Beebe, S. E. (2006). Microsatellite marker diversity in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 113, 100–109.

    Article  CAS  Google Scholar 

  24. Zhang, X., Blair, M. W., & Wang, S. (2008). Genetic diversity of Chinese common bean (Phaseolus vulgaris L.) landraces assessed with simple sequence repeat (SSR) markers. Theoretical and Applied Genetics, 117, 629–640.

    Article  CAS  Google Scholar 

  25. Blair, M. W., Diaz, L. M., Gill-Langarica, H. R., Rosales-Serna, R., Mayek-Perez, N., & Acosta-Gallegos, J. A. (2011a). Genetic relatedness of Mexican common bean cultivars revealed by microsatellite markers. Crop Science, 51, 2655–2667.

    Article  CAS  Google Scholar 

  26. Blair, M. W., Cortes, A. J., & Chavarro, M. C. (2011b). SNP marker diversity in common bean (Phaseolus vulgaris L.). Theoretical and Applied Genetics, 123, 827–845.

    Article  Google Scholar 

  27. Dı’az, L. M., & Blair, M. W. (2006). Race structure within the Mesoamerican gene pool of common bean (Phaseolus vulgaris L.) as determined by microsatellite markers. Theoretical and Applied Genetics, 114, 143–154.

    Article  Google Scholar 

  28. Asfaw, A., Blair, M. W., & Almekinders, C. (2009). Genetic diversity and population structure of common bean (Phaseolus vulgaris L.) landraces from the east African highlands. Theoretical and Applied Genetics, 120, 1–12.

    Article  Google Scholar 

  29. Blair, M. W., Gonzales, L. F., Kimani, P., & Butare, L. (2010). Inter-genepool introgression, genetic diversity and nutritional quality of common bean (Phaseolus vulgaris L.) landraces from Central Africa. Theoretical and Applied Genetics, 121, 237–248.

    Article  CAS  Google Scholar 

  30. Burle, M. L., Fonseca, J. R., Kami, J. A., & Gepts, P. (2010). Microsatellite diversity and genetic structure among common bean (Phaseolus vulgaris L.) landraces in Brazil, a secondary center of diversity. Theoretical and Applied Genetics, 121, 801–813.

    Article  Google Scholar 

  31. Xu, S., Wang, G., Mao, W., Hu, Q., Liu, N., Ye, L., & Gong, Y. (2014). Genetic diversity and population structure of common bean (Phaseolus vulgaris) landraces from China revealed by a new set of EST-SSR markers. Biochemical Systematics and Ecology, 57, 250–256.

    Article  CAS  Google Scholar 

  32. Masi, P., Spagnoletti, Z. P., & Donini, P. (2003). Development and analysis of multiplex microsatellite markers sets in common bean (Phaseolus vulgaris L.). Molecular Breeding, 11, 303–313.

    Article  CAS  Google Scholar 

  33. Me’tais, I., Hamon, B., Jalouzot, R., & Peltier, D. (2002). Structure and level of genetic diversity in various bean types evidenced with microsatellite markers isolated from a genomic enriched library. Theoretical and Applied Genetics, 104, 1346–1352.

    Article  Google Scholar 

  34. Gome’z, O., Blair, M. W., Frankow-Lindberg, B., & Gullberg, U. (2004). Molecular and phenotypic diversity of common bean landraces from Nicaragua. Crop Science, 4, 1412–1418.

    Article  Google Scholar 

  35. Dı’az, L. M., Buendı’a, H. F., Duque, M. C., & Blair, M. W. (2011). Genetic diversity of Colombian landraces of common bean as detected through the use of silver-stained and fluorescently labeled microsatellites. Plant Genetic Resources, 9, 86–96.

    Article  Google Scholar 

  36. Payro dela Cruz, P., Gepts, P., Garcia Marı’n, P. C., & Villareal, D. Z. (2005). Spatial distribution of genetic diversity in wild populations of Phaseolus vulgaris L. From Guanajuato and Michoaca’n, Me’xico. Genetic Resources and Crop Evolution, 52, 589–599.

    Article  Google Scholar 

  37. Hegay, S., Geleta, M., Bryngelsson, T., Gustavsson, L., Hovmalm, H. P., & Ortiz, R. (2012). ISSN 2322-1690 Comparing genetic diversity and population structure of common beans grown in Kyrgyzstan using microsatellites. Scientific Journal of Crop Science, 1(4), 63–75.

    Google Scholar 

  38. Scaranoa, D., Fernando, R., José, R. J., Rosa, R., & Giandomenico, C. (2014). Morphological and genetic diversity among and within common bean (Phaseolus vulgaris L.) landraces from the Campania region (southern Italy). Scientia Horticulturae, 180, 72–78.

    Article  Google Scholar 

  39. Kumar, V., Sharma, S., Sharma, A.K., Sharma, S., Bhat, K.V. (2009). Comparative analysis of diversity based on morpho-agronomic traits and microsatellite markers in common bean. Euphytica, 170 (3): 249–262.

  40. Sharma, P. N., Dı’az, L. M., & Blair, M. W. (2013). Genetic diversity of two Indian common bean germplasm collections based on morphological and microsatellite markers. Plant Genetic Resource, 11(2), 121–130.

    Article  CAS  Google Scholar 

  41. Gopinath, S. M., Katti, A. V., Dayananda, K. S., Shareef, M. I., Nair, D. V. (2013). Assessment of genetic diversity of French bean using SSR primers. International Journal of Innovative Research in Science, Engineering and Technology, 2 (9), 4745–4752.

  42. Zargar, S. M., Farhat, S., Mahajan, R., Bhakhri, A., Sharma, A. (2016). Unraveling the efficiency of RAPD and SSR markers in diversity analysis and population structure estimation in common bean. Saudi Journal of Biological Sciences, 23 (1), 139–149.

  43. Pritchard, J. K., Stephens, M., & Donnelly, P. (2000). Inference of population structure using multilocus genotype data. Genetics, 155, 945–959.

    CAS  Google Scholar 

  44. Thornsberry, J. M., Goodman, M. M., Doebley, J., Kresovich, S., Nielsen, D., & Buckler, E. S. (2001). Dwarf 8 polymorphisms associate with variation in flowering time. Nature Genetics, 28, 286–289.

    Article  CAS  Google Scholar 

  45. Pritchard, J. K., Stephens, M., Rosenberg, N. A., & Donnelly, P. (2000b). Association mapping in structured populations. The American Journal of Human Genetics, 67, 170–181.

    Article  CAS  Google Scholar 

  46. Pritchard, J. K., & Rosenberg, N. A. (1999). Use of unlinked genetic markers to detect population stratification in association studies. The American Journal of Human Genetics, 65, 220–228.

    Article  CAS  Google Scholar 

  47. Doyle, J. J., & Doyle, J. L. (1987). A rapid DNA isolation procedure to small amounts of fresh leaf tissue. Phytochemistry Bulletin, 19, 11–15.

    Google Scholar 

  48. Yu, K., Park, S. J., Poysa, V., & Gepts, P. (2000). Integration of simple sequence repeat (SSR) markers into a molecular linkage map of common bean (Phaseolus vulgaris L.). Heredity, 91, 429–434.

    Article  CAS  Google Scholar 

  49. Gaitan-Solis, E., Duque, M. C., Edwards, K. J., & Tohme, J. (2002). Microsatellite repeats in common bean (Phaseolus vulgaris): isolation, characterization, and cross-species amplification in Phaseolus ssp. Crop Science, 42, 2128–2136.

    Article  CAS  Google Scholar 

  50. Grisi, M. C. M., Blair, M. W., Gepts, P., Brondani, C., Pereira, P. A. A., & Brondadi, R. P. V. (2007). Genetic mapping of a new set of microsatellite markers in a reference common bean (Phaseolus vulgaris) population BAT93 x Jalo EEP558. Genetics and Molecular Research, 3, 691–706.

    Google Scholar 

  51. Hanai, L. R., Santini, L., Camargo, L. E. A., Fungaro, M. H. P., Gepts, P., Tsai, S. M., & Vieira, M. L. C. (2010). Extension of the core map of common bean with EST-SSR, RGA, AFLP and putative functional markers. Molecular Breeding, 25(1), 25–45.

    Article  CAS  Google Scholar 

  52. Co’ rdoba, J. M., Chavarro, C., Schlueter, J. A., Jackson, S. A., & Blair, M. W. (2010). Integration of physical and genetic maps of common bean through BAC-derived microsatellite markers. BMC Genomics, 11, 436.

    Article  Google Scholar 

  53. Bassam, B. J., Caetano-Anolles, G., & Gresshoffer, P. M. (1991). Fast and sensitive silver staining of DNA in polyacrylamide gels. Annals of Biochemistry, 196(1), 80–83.

    Article  CAS  Google Scholar 

  54. Botstein, D., White, R. L., Skolnick, M., & Davis, R. W. (1980). Construction of a genetic linkage map in man using restriction fragment length polymorphisms. American Journal of Human Genetics, 32, 314–331.

    CAS  Google Scholar 

  55. Nei, M. (1987). Molecular evolutionary genetics. New York: Columbia University press.

    Google Scholar 

  56. Liu, K., & Muse, S. V. (2005). Power marker: an integrated analysis environment for genetic marker analysis. Bioinformatics, 21(9), 2128–2129.

    Article  CAS  Google Scholar 

  57. Perrier, X., & Jacquemoud-Collet, J.P. (2006). DARwin software. http://darwin.cirad.fr/darwin.

  58. Nei, M. (1972). Genetic distance between populations. American Naturalist, 106, 283–292.

    Article  Google Scholar 

  59. Evano, G., Regnaut, S., & Goudet, J. (2005). Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Molecular Ecology, 14, 2611–2620.

    Article  Google Scholar 

  60. Earl, D., & von Holdt, B. (2012). STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conservation Genetic Resources, 4(2), 359–361.

    Article  Google Scholar 

  61. Jia, Y., Sun, J., Wang, X., Zhou, Z., Pan, Z., He, S., et al. (2013). Molecular diversity and association analysis of drought and salt tolerance in G. hirsutum L. Germplasm. Journal of Integrative Agriculture Advanced. doi:10.1016/S2095-3119(13)60668-1.

    Google Scholar 

  62. Jakobsson, M., & Rosenberg, N. A. (2007). CLUMPP: a cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics, 23(14), 1801–1806.

    Article  CAS  Google Scholar 

  63. Ramasamy, R. K., Ramasamy, S., Bindroo, B. B., & Naik, V. G. (2014). STRUCTURE PLOT: a program for drawing elegant STRUCTURE bar plots in user friendly interface. Springerplus, 13(3), 431.

    Article  Google Scholar 

  64. Wright, S. (1951). The genetical structure of populations. Annals of Eugenics, 15, 323–354.

    Article  CAS  Google Scholar 

  65. De Beukelaer, H., Sm’ykal, P., Davenport, G. F., & Fack, V. (2012). Core hunter II: fast core subset selection based on multiple genetic diversity measures using mixed replica search. BMC Bioinformatics, 13, 312.

    Article  Google Scholar 

  66. lair, M. W. B., Soler, A., & Corte’s, A. J. (2012). Diversification and population structure in common beans (Phaseolus vulgaris L.). PloS One, 7(11), e49488.

    Article  Google Scholar 

  67. Jime’nez, O. R., & Korpelainen, H. (2012). Microsatellite markers reveal promising genetic diversity and seed trait associations in common bean landraces (Phaseolus vulgaris L.) from Nicaragua. Plant Genetic Resources, 10(2), 108–118.

    Article  Google Scholar 

  68. Maras, M., Susˇtar-Vozlicˇ, J., Javornik, B., & Meglicˇ, V. (2008). The efficiency of AFLP and SSR markers in genetic diversity estimation and gene pool classification of common bean (Phaseolus vulgaris L.). Acta Agriculturae Slovenica, 91, 87–96.

    Article  CAS  Google Scholar 

  69. Okii, D., Tukamuhabwa, P., Kami, J., Namayanja, A., Paparu, P., Ugen, M., & Gepts, P. (2014). The genetic diversity and population structure of common bean (Phaseolus vulgaris L) germplasm in Uganda. African Journal of Biotechnology, 13(29), 2935–2949.

    Article  Google Scholar 

  70. Singh, S. P., Gutie’rrez, J. A., Molina, A., Urrea, C., & Gepts, P. (1991b). Genetic diversity in cultivated common bean. II. Marker-based analysis of morphological and agronomic traits. Crop Science, 31, 23–29.

    Article  CAS  Google Scholar 

  71. Logozzo, G., Donnoli, R., Macaluso, L., Papa, R., Knüpffer, H., & Zeuli, P. S. (2007). Analysis of the contribution of Mesoamerican and Andean gene pools to European common bean (Phaseolus vulgaris L.) germplasm and strategies to establish a core collection. Genetic Resources and Crop Evolution, 54, 1763–1779.

    Article  Google Scholar 

  72. Perseguini, J. M. K. C., Silva, G. M. B., Rosa, J. R. B. F., Gazaffi, R., Marçal, J. F., Carbonell, S. A. M., et al. (2015). Developing a common bean core collection suitable for association mapping studies. Genetics and Molecular Biology, 38(1), 67–78.

    Article  Google Scholar 

  73. Warburton, M., Crossa, J., Diaz, L., Gomez, A., Taba, S. (2004). Diversidad gen’ etica en criollos demais medida pormicrosat ‘ elites. In Congreso Nacional de Biotecnolog’ıa Agropecuaria y Forestal. Chapingo, M’exico.

  74. Dubreuil, P., Warburton, M., Chastanet, M., Hoisington, D., & Charcosset, A. (2006). More on the introduction of temperate maize into Europe: large-scale bulk SSR genotyping and new historical elements. Maydica, 51, 281–291.

    Google Scholar 

  75. Sm’ykal, P., Baˇcov’a-Kerteszov’a, N., Kalendar, R., Corander, J., Schulman, A. H., & Pavelek, M. (2011a). Genetic diversity of cultivated flax (Linum usitatissimum L.) germplasm assessed by retrotransposon-basedmarkers. Theoretical and Applied Genetics, 122, 1385–1397.

    Article  Google Scholar 

  76. Sm’ykal, P., H’ybl, M., Corander, J., Jarkovsk’y, J., Flavell, A., & Griga, M. (2008). Genetic diversity and population structure of pea (Pisum sativum L.) varieties derived from combined retrotransposon, microsatellite and morphological marker analysis. Theoretical and Applied Genetics, 117, 413–424.

    Article  Google Scholar 

  77. Jing, R., Vershinin, A., Grzebyta, J., Shaw, P., Sm’ykal, P., Marshall, D., et al. (2010). The genetic diversity and evolution of field pea (Pisum) studied by high throughput retrotransposon based insertion polymorphism (RBIP) marker analysis. BMC Evolutionary Biology, 10, 44.

    Article  Google Scholar 

  78. Sm’ykal, P., Kenicer, G., Flavell, A. J., Corander, J., Kosterin, O., Redden, R. J., et al. (2011b). Phylogeny, phylogeography and genetic diversity of the Pisum genus. Plant Genetic Resource, 9, 4–18.

    Article  Google Scholar 

Download references

Acknowledgements

SMZ is grateful to SERB, DST, New Delhi for financial support of this work (Project sanction order No. SR/FT/LS-27/ 2011).

Contribution of Authors

RM was involved in laboratory experiments and was also involved in data analysis. SMZ has designed experiment and has guided molecular experiments, analysis and manuscript preparation. RS has helped in data analysis and manuscript correction. SF and HS helped in data analysis. RKS helped in manuscript preparation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sajad Majeed Zargar.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest.

Submission Declaration

The work described has neither been published nor is under consideration for publication in any other journal, and if accepted, it will not be published anywhere in this form or any other form.

Electronic supplementary material

Supplementary Figure1

Jammu and Kashmir Map. Red triangle indicates the region of common bean collection. (PPTX 155 kb)

Supplementary Figure 2

NJ tree dendrogram. Red colour indicates population I, green colour indicates population II and Blue colour indicates population III and grey colour admixture. (PPTX 84 kb)

Supplementary Figure 3

Graphical representation of the optimal number of groups in STRUCTURE inferred using the criterion of Evanno et al. (2005). The analysis was based on data obtained using 23 microsatellite markers. (PPTX 122 kb)

Supplementary Figure 4

Core Set of 96 diverse common bean genotypes. (PPTX 114 kb)

Supplementary Table 1

(DOCX 21 kb)

Supplementary Table 2

(DOCX 25 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahajan, R., Zargar, S.M., Singh, R. et al. Population Structure Analysis and Selection of Core Set among Common Bean Genotypes from Jammu and Kashmir, India. Appl Biochem Biotechnol 182, 16–28 (2017). https://doi.org/10.1007/s12010-016-2307-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2307-1

Keywords

Navigation