Skip to main content
Log in

Molecular and Spectroscopic Characterization of Aspergillus flavipes and Pseudomonas putida L-Methionine γ-Lyase in Vitro

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Pseudomonas putida L-methionine γ-lyase (PpMGL) has been recognized as an efficient anticancer agent, however, its antigenicity and stability remain as critical challenges for its clinical use. From our studies, Aspergillus flavipes L-methionine γ-lyase (AfMGL) displayed more affordable biochemical properties than PpMGL. Thus, the objective of this work was to comparatively assess the functional properties of AfMGL and PpMGL via stability of their internal aldimine linkage, tautomerism of pyridoxal 5′-phosphate (PLP) and structural stability responsive to physicochemical factors. The internal Schiff base of AfMGL and PpMGL have the same stability to hydroxylamine and human serum albumin. Acidic pHs resulted in strong cleavage of the internal Schiff base, inducing the unfolding of MGLs, compared to neutral-alkaline pHs. At λ 280 nm excitation, both AfMGL and PpMGL have identical fluorescence emission spectra at λ 335 nm for the intrinsic tryptophan and λ 560 nm for the internal Schiff base. The maximum PLP tautomeric shift of ketoenamine to enolimine was detected at acidic pH causing complete enzyme unfolding, subunits dissociation and tautomeric shift of intrinsic PLP, rather than neutral-alkaline ones. The T m of AfMGL and PpMGL in presence of thermal stabilizer/ destabilizer was assayed by DSF. The T m of AfMGL and PpMGL was 73.1 °C and 74.4 °C, respectively, suggesting the higher proximity to the tertiary structure of both enzymes. The T m of AfMGL and PpMGL was slightly increased by trehalose and EDTA in contrast to guanidine HCl and urea. The active site and PLP-binding domains are identically conserved in both AfMGL and PpMGL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Inoue, H., et al. (1995). Structural analysis of the L-methionine gamma-lyase gene from pseudomonas putida. Journal of Biochemistry, 117(5), 1120–1125.

    Article  CAS  Google Scholar 

  2. Hoffman, R. M. (1984). Altered methionine metabolism, DNA methylation and oncogene expression in carcinogenesis. A review and synthesis. Biochimica et Biophysica Acta, 738(1–2), 49–87.

    CAS  Google Scholar 

  3. El-Sayed, A. S. (2010). Microbial L-methioninase: production, molecular characterization, and therapeutic applications. Applied Microbiology and Biotechnology, 86(2), 445–467.

    Article  CAS  Google Scholar 

  4. Guo, H., et al. (1993). Therapeutic tumor-specific cell cycle block induced by methionine starvation in vivo. Cancer Research, 53(23), 5676–5679.

    CAS  Google Scholar 

  5. Yang, Z., et al. (2004). Pharmacokinetics, methionine depletion, and antigenicity of recombinant methioninase in primates. Clinical Cancer Research, 10(6), 2131–2138.

    Article  CAS  Google Scholar 

  6. Breillout, F., Antoine, E., & Poupon, M. F. (1990). Methionine dependency of malignant tumors: a possible approach for therapy. Journal of the National Cancer Institute, 82(20), 1628–1632.

    Article  CAS  Google Scholar 

  7. Kokkinakis, D. M., et al. (1997). Effect of long-term depletion of plasma methionine on the growth and survival of human brain tumor xenografts in athymic mice. Nutrition and Cancer, 29(3), 195–204.

    Article  CAS  Google Scholar 

  8. Kokkinakis, D. M. (2006). Methionine-stress: a pleiotropic approach in enhancing the efficacy of chemotherapy. Cancer Letters, 233(2), 195–207.

    Article  CAS  Google Scholar 

  9. Goyer, A., et al. (2007). Functional characterization of a methionine gamma-lyase in Arabidopsis and its implication in an alternative to the reverse trans-sulfuration pathway. Plant & Cell Physiology, 48(2), 232–242.

    Article  CAS  Google Scholar 

  10. Hori, H., et al. (1996). Gene cloning and characterization of pseudomonas putida L-methionine-alpha-deamino-gamma-mercaptomethane-lyase. Cancer Research, 56(9), 2116–2122.

    CAS  Google Scholar 

  11. Tan, Y., et al. (1996). Anticancer efficacy of methioninase in vivo. Anticancer Research, 16(6c), 3931–3936.

    CAS  Google Scholar 

  12. Tan, Y., et al. (1998). Polyethylene glycol conjugation of recombinant methioninase for cancer therapy. Protein Expression and Purification, 12(1), 45–52.

    Article  CAS  Google Scholar 

  13. Motoshima, H., et al. (2000). Crystal structure of the pyridoxal 5′-phosphate dependent L-methionine gamma-lyase from pseudomonas putida. Journal of Biochemistry, 128(3), 349–354.

    Article  CAS  Google Scholar 

  14. Kudou, D., et al. (2007). Structure of the antitumour enzyme L-methionine gamma-lyase from pseudomonas putida at 1.8 a resolution. Journal of Biochemistry, 141(4), 535–544.

    Article  CAS  Google Scholar 

  15. Revtovich, S. V., et al. (2014). Crystal structure of the external aldimine of Citrobacter freundii methionine gamma-lyase with glycine provides insight in mechanisms of two stages of physiological reaction and isotope exchange of alpha- and beta-protons of competitive inhibitors. Biochimie, 101, 161–167.

    Article  CAS  Google Scholar 

  16. Takakura, T., et al. (2006). High-level expression and bulk crystallization of recombinant L-methionine gamma-lyase, an anticancer agent. Applied Microbiology and Biotechnology, 70(2), 183–192.

    Article  CAS  Google Scholar 

  17. Tan, Y., Xu, M., & Hoffman, R. M. (2010). Broad selective efficacy of recombinant methioninase and polyethylene glycol-modified recombinant methioninase on cancer cells in vitro. Anticancer Research, 30(4), 1041–1046.

    CAS  Google Scholar 

  18. Sun, X., et al. (2003). In vivo efficacy of recombinant methioninase is enhanced by the combination of polyethylene glycol conjugation and pyridoxal 5′-phosphate supplementation. Cancer Research, 63(23), 8377–8383.

    CAS  Google Scholar 

  19. Calloni, G., et al. (2012). DnaK functions as a central hub in the E. coli chaperone network. Cell Reports, 1(3), 251–264.

    Article  CAS  Google Scholar 

  20. Karamitros, C. S., & Konrad, M. (2014). Human 60-kDa lysophospholipase contains an N-terminal L-asparaginase domain that is allosterically regulated by L-asparagine. The Journal of Biological Chemistry, 289(19), 12962–12975.

    Article  CAS  Google Scholar 

  21. El-Sayed, A. S. (2011). Purification and characterization of a new L-methioninase from solid cultures of Aspergillus flavipes. Journal of Microbiology, 49(1), 130–140.

    Article  CAS  Google Scholar 

  22. El-Sayed, A. S., Shouman, S. A., & Nassrat, H. M. (2012). Pharmacokinetics, immunogenicity and anticancer efficiency of Aspergillus flavipes L-methioninase. Enzyme and Microbial Technology, 51(4), 200–210.

    Article  CAS  Google Scholar 

  23. El-Sayed, A. S., Ibrahim, H., & Sitohy, M. Z. (2014). Co-immobilization of PEGylated Aspergillus flavipes L-methioninase with glutamate dehydrogenase: a novel catalytically stable anticancer consortium. Enzyme and Microbial Technology, 54, 59–69.

    Article  CAS  Google Scholar 

  24. Ruiz-Herrera, J., & Starkey, R. L. (1969). Dissimilation of methionine by fungi. Journal of Bacteriology, 99(2), 544–551.

    CAS  Google Scholar 

  25. Ruiz-Herrera, J., & Starkey, R. L. (1969). Dissimilation of methionine by a demethiolase of Aspergillus species. Journal of Bacteriology, 99(3), 764–770.

    CAS  Google Scholar 

  26. Khalaf, S. A., & El-Sayed, A. S. (2009). L-methioninase production by filamentous fungi: I-screening and optimization under submerged conditions. Current Microbiology, 58(3), 219–226.

    Article  CAS  Google Scholar 

  27. Han, Q., et al. (1998). High expression, purification, and properties of recombinant homocysteine alpha, gamma-lyase. Protein Expression and Purification, 14(2), 267–274.

    Article  CAS  Google Scholar 

  28. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227(5259), 680–685.

    Article  CAS  Google Scholar 

  29. Nakashima, Y., et al. (2009). Crystallization and preliminary crystallographic analysis of bifunctional gamma-glutamylcysteine synthetase-glutatione synthetase from Streptococcus agalactiae. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 65(Pt 7), 678–680.

    Article  CAS  Google Scholar 

  30. Matte, A., et al. (2010). Structural analysis of Bacillus Pumilus phenolic acid decarboxylase, a lipocalin-fold enzyme. Acta Crystallographica. Section F, Structural Biology and Crystallization Communications, 66(Pt 11), 1407–1414.

    Article  CAS  Google Scholar 

  31. Claesson, R., et al. (1990). Production of volatile sulfur compounds by various Fusobacterium species. Oral Microbiology and Immunology, 5(3), 137–142.

    Article  CAS  Google Scholar 

  32. Barrett, J. F., & Curtiss 3rd, R. (1986). Renaturation of dextranase activity from culture supernatant fluids of Streptococcus Sobrinus after sodium dodecylsulfate polyacrylamide gel electrophoresis. Analytical Biochemistry, 158(2), 365–370.

    Article  CAS  Google Scholar 

  33. Yoshida, Y., et al. (2010). Production of hydrogen sulfide by two enzymes associated with biosynthesis of homocysteine and lanthionine in Fusobacterium nucleatum subsp. Nucleatum ATCC 25586. Microbiology, 156(Pt 7), 2260–2269.

    Article  CAS  Google Scholar 

  34. Yoshida, Y., et al. (2010). Use of a novel assay to evaluate enzymes that produce hydrogen sulfide in Fusobacterium nucleatum. Journal of Microbiological Methods, 80(3), 313–315.

    Article  CAS  Google Scholar 

  35. Bettati, S., et al. (2000). Role of pyridoxal 5′-phosphate in the structural stabilization of O-acetylserine sulfhydrylase. The Journal of Biological Chemistry, 275(51), 40244–40251.

    Article  CAS  Google Scholar 

  36. Yadav, P. K., Xie, P., & Banerjee, R. (2012). Allosteric communication between the pyridoxal 5′-phosphate (PLP) and heme sites in the H2S generator human cystathionine beta-synthase. The Journal of Biological Chemistry, 287(45), 37611–37620.

    Article  CAS  Google Scholar 

  37. Dias, B., & Weimer, B. (1998). Purification and characterization of L-methionine gamma-lyase from brevibacterium linens BL2. Applied and Environmental Microbiology, 64(9), 3327–3331.

    CAS  Google Scholar 

  38. Soda, K., et al. (1969). Spectrophotometric determination of pyridoxal and pyridoxal 5′-phosphate with 3-methyl-2-benzothiazolone hydrazone hydrochloride, and their selective assay. The Biochemical Journal, 114(3), 629–633.

    Article  CAS  Google Scholar 

  39. McClure Jr., G. D., & Cook, P. F. (1994). Product binding to the alpha-carboxyl subsite results in a conformational change at the active site of O-acetylserine sulfhydrylase-a: evidence from fluorescence spectroscopy. Biochemistry, 33(7), 1674–1683.

    Article  CAS  Google Scholar 

  40. Marabotti, A., et al. (2001). Allosteric communication of tryptophan synthase. Functional and regulatory properties of the beta S178P mutant. The Journal of Biological Chemistry, 276(21), 17747–17753.

    Article  CAS  Google Scholar 

  41. Zhou, X., & Toney, M. D. (1999). pH studies on the mechanism of the pyridoxal phosphate-dependent dialkylglycine decarboxylase. Biochemistry, 38(1), 311–320.

    Article  CAS  Google Scholar 

  42. Vedadi, M., et al. (2006). Chemical screening methods to identify ligands that promote protein stability, protein crystallization, and structure determination. Proceedings of the National Academy of Sciences of the United States of America, 103(43), 15835–15840.

    Article  CAS  Google Scholar 

  43. Niesen, F. H., Berglund, H., & Vedadi, M. (2007). The use of differential scanning fluorimetry to detect ligand interactions that promote protein stability. Nature Protocols, 2(9), 2212–2221.

    Article  CAS  Google Scholar 

  44. Lea, W. A., & Simeonov, A. (2012). Differential scanning fluorometry signatures as indicators of enzyme inhibitor mode of action: case study of glutathione S-transferase. PloS One, 7(4), e36219.

    Article  CAS  Google Scholar 

  45. Grimsley, G.R., et al. (2013). Determining the conformational stability of a protein from urea and thermal unfolding curves. Current Protocols in Protein Science, Chapter 28: p. Unit28.4.

  46. Bansal, S., et al. (2012). Hyperthermophilic asparaginase mutants with enhanced substrate affinity and antineoplastic activity: structural insights on their mechanism of action. The FASEB Journal, 26(3), 1161–1171.

    Article  CAS  Google Scholar 

  47. Tie, J. K., et al. (2004). Chemical modification of cysteine residues is a misleading indicator of their status as active site residues in the vitamin K-dependent gamma-glutamyl carboxylation reaction. The Journal of Biological Chemistry, 279(52), 54079–54087.

    Article  CAS  Google Scholar 

  48. Reddy, Y. V., & Rao, D. N. (1998). Probing the role of cysteine residues in the EcoP15I DNA methyltransferase. The Journal of Biological Chemistry, 273(37), 23866–23876.

    Article  CAS  Google Scholar 

  49. Singh, A. R., et al. (2010). Guanidine hydrochloride and urea-induced unfolding of Brugia malayi hexokinase. European Biophysics Journal, 39(2), 289–297.

    Article  CAS  Google Scholar 

  50. Duran, R. M., et al. (2014). The role of Aspergillus flavus veA in the production of extracellular proteins during growth on starch substrates. Applied Microbiology and Biotechnology, 98(11), 5081–5094.

    Article  CAS  Google Scholar 

  51. Shevchenko, A., et al. (2006). In-gel digestion for mass spectrometric characterization of proteins and proteomes. Nature Protocols, 1(6), 2856–2860.

    Article  CAS  Google Scholar 

  52. Stalder, D., et al. (2013). Phosphorylation of the Rab exchange factor Sec2p directs a switch in regulatory binding partners. Proceedings of the National Academy of Sciences of the United States of America, 110(50), 19995–20002.

    Article  CAS  Google Scholar 

  53. Karmodiya, K., et al. (2007). Conformational stability and thermodynamic characterization of homotetrameric plasmodium falciparum beta-ketoacyl-ACP reductase. IUBMB Life, 59(7), 441–449.

    Article  CAS  Google Scholar 

  54. Kaushik, J. K., & Bhat, R. (2003). Why is trehalose an exceptional protein stabilizer? An analysis of the thermal stability of proteins in the presence of the compatible osmolyte trehalose. The Journal of Biological Chemistry, 278(29), 26458–26465.

    Article  CAS  Google Scholar 

  55. Hayashi, S., & Nakamura, S. (1981). Multiple forms of glucose oxidase with different carbohydrate compositions. Biochimica et Biophysica Acta, 657(1), 40–51.

    Article  CAS  Google Scholar 

  56. Kudou, D., et al. (2008). The role of cysteine 116 in the active site of the antitumor enzyme L-methionine gamma-lyase from pseudomonas putida. Bioscience, Biotechnology, and Biochemistry, 72(7), 1722–1730.

    Article  CAS  Google Scholar 

  57. Pieters, R., et al. (2011). L-asparaginase treatment in acute lymphoblastic leukemia: a focus on Erwinia asparaginase. Cancer, 117(2), 238–249.

    Article  CAS  Google Scholar 

  58. Borkovich, K. A., & Weiss, R. L. (1987). Purification and characterization of arginase from Neurospora crassa. The Journal of Biological Chemistry, 262(15), 7081–7086.

    CAS  Google Scholar 

  59. Yamagata, S., Akamatsu, T., & Iwama, T. (2004). Immobilization of Saccharomyces cerevisiae cystathionine gamma-lyase and application of the product to cystathionine synthesis. Applied and Environmental Microbiology, 70(6), 3766–3768.

    Article  CAS  Google Scholar 

  60. Suwabe, K., et al. (2011). Identification of an L-methionine gamma-lyase involved in the production of hydrogen sulfide from L-cysteine in Fusobacterium nucleatum subsp. Nucleatum ATCC 25586. Microbiology, 157(Pt 10), 2992–3000.

    Article  CAS  Google Scholar 

  61. Burstein, E. A., Vedenkina, N. S., & Ivkova, M. N. (1973). Fluorescence and the location of tryptophan residues in protein molecules. Photochemistry and Photobiology, 18(4), 263–279.

    Article  CAS  Google Scholar 

  62. York, S. S. (1972). Kinetic spectroscopic studies of substrate and subunit interactions of tryptophan synthetase. Biochemistry, 11(14), 2733–2740.

    Article  CAS  Google Scholar 

  63. Strambini, G. B., et al. (1992). Conformational changes and subunit communication in tryptophan synthase: effect of substrates and substrate analogs. Biochemistry, 31(33), 7535–7542.

    Article  CAS  Google Scholar 

  64. Fonda, M. L., Trauss, C., & Guempel, U. M. (1991). The binding of pyridoxal 5′-phosphate to human serum albumin. Archives of Biochemistry and Biophysics, 288(1), 79–86.

    Article  CAS  Google Scholar 

  65. Bohney, J. P., Fonda, M. L., & Feldhoff, R. C. (1992). Identification of Lys190 as the primary binding site for pyridoxal 5′-phosphate in human serum albumin. FEBS Letters, 298(2–3), 266–268.

    Article  CAS  Google Scholar 

  66. Benci, S., et al. (1999). Time-resolved fluorescence of O-acetylserine sulfhydrylase. Biochimica et Biophysica Acta, 1429(2), 317–330.

    Article  CAS  Google Scholar 

  67. Pazicni, S., et al. (2004). The redox behavior of the heme in cystathionine beta-synthase is sensitive to pH. Biochemistry, 43(46), 14684–14695.

    Article  CAS  Google Scholar 

  68. Weeks, C. L., et al. (2009). Heme regulation of human cystathionine beta-synthase activity: insights from fluorescence and Raman spectroscopy. Journal of the American Chemical Society, 131(35), 12809–12816.

    Article  CAS  Google Scholar 

  69. Amarita, F., et al. (2004). Identification and functional analysis of the gene encoding methionine-gamma-lyase in brevibacterium linens. Applied and Environmental Microbiology, 70(12), 7348–7354.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashraf S. A. El-Sayed.

Electronic supplementary material

ESM 1

(DOC 301 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Sayed, A.S.A., Ruff, L.E., Ghany, S.E.A. et al. Molecular and Spectroscopic Characterization of Aspergillus flavipes and Pseudomonas putida L-Methionine γ-Lyase in Vitro. Appl Biochem Biotechnol 181, 1513–1532 (2017). https://doi.org/10.1007/s12010-016-2299-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2299-x

Keywords

Navigation