Skip to main content

Advertisement

Log in

Phytase Production and Development of an Ideal Dephytinization Process for Amelioration of Food Nutrition Using Microbial Phytases

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Development of an ideal process for reduction of food phytates using microbial phytases is a demanding task by all food and feed industries all over the world. Phytase production by Bacillus subtilis subsp. subtilis JJBS250 isolated from soil sample was optimized in submerged fermentation using statistical tools. Among all the culture variables tested, sucrose, sodium phytate and Tween-80 were identified as the most significant variables using the Placket–Burman design. Further optimization of these variables resulted in a 6.79-fold improvement in phytase production (7170 U/L) as compared to unoptimized medium. Supplementation of microbial phytases (fungal and bacterial) resulted in improved bioavailability of nutritional components with the concomitant liberation of inorganic phosphorus, reducing sugar, soluble protein and amino acids, thus mitigating anti-nutritional properties of phytic acid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Vohra, A., & Satyanarayana, T. (2003). Phytases: microbial sources, production, purification and potential biotechnological applications. Critical Reviews in Biotechnology, 23, 29–60.

    Article  CAS  Google Scholar 

  2. Vats, P., & Banerjee, U. C. (2004). Production studies and catalytic properties of phytases (myo-inositolhexakisphosphate phosphohydrolases): an overview. Enzyme and Microbial Technology, 35, 3–14.

    Article  CAS  Google Scholar 

  3. Singh, B., & Satyanarayana, T. (2011). Phytases from themophilic molds: their production, characteristics and multifarious applications. Process Biochemistry, 46, 1391–1398.

    Article  CAS  Google Scholar 

  4. Singh, B., Kunze, G., & Satyanarayana, T. (2011). Developments in biochemical aspects and biotechnological applications of microbial phytases. Biotechnology and Molecular Biology Reviews, 6, 69–87.

    CAS  Google Scholar 

  5. Jinender, J., Sapna, & Singh, B. (2016). Characteristics and biotechnological applications of bacterial phytases. Process Biochemistry, 51, 159–169.

    Article  Google Scholar 

  6. Singh, B., & Satyanarayana, T. (2015). Fungal phytases: characteristics and amelioration of nutritional quality and growth of non-ruminants. Journal of Animal Physiology and Animal Nutrition, 99, 646–660.

    Article  CAS  Google Scholar 

  7. Vohra, A., & Satyanarayana, T. (2002). Statistical optimization of the medium components by response surface methodology to enhance phytase production by Pichia anomala. Process Biochemistry, 7, 999–1004.

    Article  Google Scholar 

  8. Bogar, B., Szakacs, G., Pandey, A., Abdulhameed, S., Linden, J. C., & Tengerdy, R. P. (2003). Production of phytase by Mucor racemosus in solid-state fermentation. Biotechnology Progress, 19, 312–319.

    Article  CAS  Google Scholar 

  9. Sonia, D., & Namita, S. R. (2009). Optimization of growth parameters of phytase producing fungus using RSM. Journal of Scientific and Industrial Research, 68, 955–959.

    Google Scholar 

  10. Singh, B., & Satyanarayana, T. (2006a). A marked enhancement in phytase production by a thermophilic mould Sporotrichum thermophile using statistical designs in a cost-effective cane molasses medium. Journal of Applied Microbiology, 101, 344–352.

    Article  CAS  Google Scholar 

  11. Singh, B., & Satyanarayana, T. (2008a). Improved phytase production by a thermophilic mould Sporotrichum thermophile in submerged fermentation due to statistical optimization. Bioresource Technology, 99, 824–830.

    Article  CAS  Google Scholar 

  12. Bajaj, B. K., & Wani, M. A. (2011). Enhanced phytase production from Nocardia sp. MB 36 using agro-residues as substrates: potential application for animal feed production. Engineering in Life Sciences, 6, 620–628.

    Article  Google Scholar 

  13. Gangoliya, S. S., Gupta, R. K., & Singh, N. K. (2015). Phytase production through response surface methodology and molecular characterization of Aspergillus fumigatus NF191. Indian Journal of Experimental Biology, 53, 350–355.

    Google Scholar 

  14. Kumari, A., Satyanarayana, T., & Singh, B. (2015). Mixed substrate fermentation for enhanced phytase production by thermophilic mould Sporotrichum thermophile and its application in beneficiation of poultry feed. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-015-1868-8.

    Google Scholar 

  15. Sapna, & Singh, B. (2015). Biocatalytic potential of protease-resistant phytase of Aspergillus oryzae SBS50 in ameliorating food nutrition. Biocatalysis and Biotransformation, 33, 167–174.

    Article  CAS  Google Scholar 

  16. Fiske, C. H., & Subbarow, Y. P. (1925). The colorimetric determination of phosphorus. The Journal of Biological Chemistry, 66, 375–400.

    CAS  Google Scholar 

  17. Plackett, R. L., & Burman, J. P. (1946). The design of optimum multi-factor experiments. Biometrika, 33, 305–325.

    Article  Google Scholar 

  18. Singh, B., & Satyanarayana, T. (2006b). Phytase production by thermophilic mold Sporotrichum thermophile in solid-state fermentation and its application in dephytinization of sesame oil cake. Applied Biochemistry and Biotechnology, 133, 239–250.

    Article  CAS  Google Scholar 

  19. Mittal, A., Singh, G., Goyal, V., Yadav, A., & Aggarwal, N. K. (2011). Optimization of medium components for phytase production on orange peel flour by Klebsiella sp. DB3 using response surface methodology. Innovative Romanian Food Biotechnology, 9, 35–44.

    CAS  Google Scholar 

  20. Rani, R., Arora, S., Kumar, S., & Ghosh, S. (2013). Optimization of medium components for the production of phytase by R. oryzae using statistical approaches. Journal of Bioremediation & Biodegradation. doi:10.4172/2155-6199.S18-003.

    Google Scholar 

  21. Berikten, D., & Kivanc, M. (2014). Optimization of solid-state fermentation for phytase production by Thermomyces lanuginosus using response surface methodology. Preparative Biochemistry and Biotechnology, 44, 834–848.

    Article  CAS  Google Scholar 

  22. Thyagarajan, R., Namasivayam, S. K. R., & Kumar, G. K. (2014). Optimization of medium components for phytase production by Hypocrea lixii SURT01 using response surface methodology. Journal of Pure and Applied Microbiology, 8, 2485–2490.

    CAS  Google Scholar 

  23. Tran, T. T., Mamo, G., Mattiasson, B., & Hatti-Kaul, R. (2010). A thermostable phytase from Bacillus sp. MD2: cloning, expression and high-level production in Escherichia coli. Journal of Industrial Microbiology and Biotechnology, 37, 279–287.

    Article  CAS  Google Scholar 

  24. Rao, D. E. C. S., Rao, K. V., & Reddy, V. D. (2008). Cloning and expression of Bacillus phytase gene (phy) in Escherichia coli and recovery of active enzyme from the inclusion bodies. Journal of Applied Microbiology, 105, 1128–1137.

    Article  CAS  Google Scholar 

  25. Guerrero-Olazaran, M., Rodriguez-Blanco, L., Carreon-Trevino, J. G., Gallegos-Lopez, J. A., & Viader-Salvado, J. M. (2010). Expression of a Bacillus phytase C gene in Pichia pastoris and properties of the recombinant enzyme. Applied and Environmental Microbiology, 76, 5601–5608.

    Article  CAS  Google Scholar 

  26. Hmida-Sayari, A., Elgharbi, F., Farhat, A., Rekik, H., Blondeau, K., & Bejar, S. (2014). Overexpression and biochemical characterization of a thermostable phytase from Bacillus subtilis US417 in Pichia pastoris. Molecular Biotechnology, 56, 839–848.

    Article  CAS  Google Scholar 

  27. Sanz-Penella, J. M., Frontela, C., Ros, G., Martinez, C., Monedero, V., & Haros, M. (2012). Application of bifidobacterial phytases in infant cereals: effect on phytate contents and mineral dialyzability. Journal of Agricultural and Food Chemistry, 60, 11787–11792.

    Article  CAS  Google Scholar 

  28. Singh, B., & Satyanarayana, T. (2008b). Phytase production by a thermophilic mould Sporotrichum thermophile in solid state fermentation and its potential applications. Bioresource Technology, 99, 2824–2830.

    Article  CAS  Google Scholar 

  29. Bala, A., Sapna, Jain, J., Kumari, A., & Singh, B. (2014). Production of an extracellular phytase from a thermophilic mould Humicola nigrescens in solid state fermentation and its application in dephytinization. Biocatalysis and Agricultural Biotechnology, 3, 259–264.

    Article  Google Scholar 

  30. Sapna, & Singh, B. (2014). Phytase production by Aspergillus oryzae in solid-state fermentation and its applicability in dephytinization of wheat bran. Applied Biochemistry and Biotechnology, 173, 1885–1895.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Authors are highly thankful to the Department of Science and Technology (No. SR/FT/LS-95/2010), New Delhi, India for providing the financial assistance during this research work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bijender Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jain, J., Singh, B. Phytase Production and Development of an Ideal Dephytinization Process for Amelioration of Food Nutrition Using Microbial Phytases. Appl Biochem Biotechnol 181, 1485–1495 (2017). https://doi.org/10.1007/s12010-016-2297-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2297-z

Keywords

Navigation