Skip to main content
Log in

Cotton Stalk Pretreatment Using Daedalea flavida, Phlebia radiata, and Flavodon flavus: Lignin Degradation, Cellulose Recovery, and Enzymatic Saccharification

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Lignocellulolytic enzyme activities of selective fungi Daedalea flavida MTCC 145 (DF-2), Phlebia radiata MTCC 2791 (PR), and non-selective fungus Flavodon flavus MTCC 168 (FF) were studied for pretreatment of cotton stalks. Simultaneous productions of high LiP and laccase activities by DF-2 during early phase of growth were effective for lignin degradation 27.83 ± 1.25 % (w/w of lignin) in 20-day pretreatment. Production of high MnP activity without laccase in the early growth phase of PR was ineffective and delayed lignin degradation 24.93 ± 1.53 % in 25 days due to laccase production at later phase. With no LiP activity, low activities of MnP and laccase by FF yielded poor lignin degradation 15.09 ± 0.6 % in 20 days. Xylanase was predominant cellulolytic enzyme produced by DF-2, resulting hemicellulose as main carbon and energy source with 83 % of cellulose recovery after 40 days of pretreatment. The glucose yield improved more than two fold from 20-day DF-2 pretreated cotton stalks after enzymatic saccharification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Schell, D. J., Walter, P. J., & Johnson, D. K. (1992). Dilute sulfuric acid pretreatment of corn stover at high solids concentrations. Applied Biochemistry and Biotechnology, 34(1), 659–665.

    Article  Google Scholar 

  2. Taniguchi, M., Suzuki, H., Watanabe, D., Sakai, K., Hoshino, K., & Tanaka, T. (2005). Evaluation of pretreatment with Pleurotus ostreatus for enzymatic hydrolysis of rice straw. Journal of Bioscience and Bioengineering, 100(6), 637–643.

    Article  CAS  Google Scholar 

  3. Hu, Z., Wang, Y., & Wen, Z. (2008). Alkali (NaOH) pretreatment of switchgrass by radio frequency-based dielectric heating. Applied Biochemistry and Biotechnology, 148(1–3), 71–81.

    Article  CAS  Google Scholar 

  4. Boyle, C. D., Kropp, B. R., & Reid, I. D. (1992). Solubilization and mineralization of lignin by white rot fungi. Applied and Environmental Microbiology, 58(10), 3217–3224.

    CAS  Google Scholar 

  5. Liu, J., Wang, M. L., Tonnis, B., Habteselassie, M., Liao, X., & Huang, Q. (2013). Fungal pretreatment of switchgrass for improved saccharification and simultaneous enzyme production. Bioresource Technology, 135, 39–45.

    Article  CAS  Google Scholar 

  6. Ryu, S.-H., Cho, M.-K., Kim, M., Jung, S.-M., & Seo, J.-H. (2013). Enhanced lignin biodegradation by a laccase-overexpressed white-rot fungus Polyporus brumalis in the pretreatment of wood chips. Applied Biochemistry and Biotechnology, 171(6), 1525–1534.

    Article  CAS  Google Scholar 

  7. Song, L., Ma, F., Zeng, Y., Zhang, X., & Yu, H. (2013). The promoting effects of manganese on biological pretreatment with Irpex lacteus and enzymatic hydrolysis of corn stover. Bioresource Technology, 135, 89–92.

    Article  CAS  Google Scholar 

  8. Norhaslida, R., Halis, R., Lakarim, L., Danial, M. I., Low, J. C., & Naimah, M. S. (2014). Chemical alteration of banana pseudostems by white rot fungi. Biomass and Bioenergy, 61, 206–210.

    Article  CAS  Google Scholar 

  9. García-Torreiro, M., López-Abelairas, M., Lu-Chau, T. A., & Lema, J. M. (2016). Fungal pretreatment of agricultural residues for bioethanol production. Industrial Crops and Products, 89, 486–492.

    Article  Google Scholar 

  10. Vasco-Correa, J., Ge, X., & Li, Y. (2016). Fungal pretreatment of non-sterile miscanthus for enhanced enzymatic hydrolysis. Bioresource Technology, 203, 118–123.

    Article  CAS  Google Scholar 

  11. Reid, I. D. (1985). Biological delignification of aspen wood by solid-state fermentation with the white-rot fungus Merulius-Tremellosus. Applied and Environmental Microbiology, 50(1), 133–139.

    CAS  Google Scholar 

  12. Shi, J., Sharma-Shivappa, R. R., Chinn, M., & Howell, N. (2009). Effect of microbial pretreatment on enzymatic hydrolysis and fermentation of cotton stalks for ethanol production. Biomass and Bioenergy, 33(1), 88–96.

    Article  CAS  Google Scholar 

  13. Wan, C., & Li, Y. (2010). Microbial delignification of corn stover by Ceriporiopsis subvermispora for improving cellulose digestibility. Enzyme and Microbial Technology, 47(1–2), 31–36.

    Article  CAS  Google Scholar 

  14. Xu, C., Ma, F., & Zhang, X. (2009). Lignocellulose degradation and enzyme production by Irpex lacteus CD2 during solid-state fermentation of corn stover. Journal of Bioscience and Bioengineering, 108(5), 372–375.

    Article  CAS  Google Scholar 

  15. Saritha, M., Arora, A., & Nain, L. (2012). Pretreatment of paddy straw with Trametes hirsuta for improved enzymatic saccharification. Bioresource Technology, 104, 459–465.

    Article  CAS  Google Scholar 

  16. Shi, J., Sharma-Shivappa, R. R., & Chinn, M. S. (2012). Interactions between fungal growth, substrate utilization and enzyme production during shallow stationary cultivation of Phanerochaete chrysosporium on cotton stalks. Enzyme and Microbial Technology, 51(1), 1–8.

    Article  CAS  Google Scholar 

  17. Ander, P., & Eriksson, K.-E. (1977). Selective degradation of wood components by white-rot fungi. Physiologia Plantarum, 41, 239–248.

    Article  CAS  Google Scholar 

  18. Hankin, L., & Anagnostakis, S. L. (1975). The use of solid media for detection of enzyme production by fungi. Mycologia, 67(3), 597–607.

    Article  Google Scholar 

  19. Egger, K. N. (1986). Substrate hydrolysis patterns of post-fire ascomycetes (Pezizales). Mycologia, 78(5), 771–780.

    Article  CAS  Google Scholar 

  20. Teather, R. M., & Wood, P. J. (1982). Use of Congo red-polysaccharide interactions in enumeration and characterization of cellulolytic bacteria from the bovine Rument. Applied and Environmental Microbiology, 43(4), 777–780.

    CAS  Google Scholar 

  21. Bourbonnais, R., & Paice, M. G. (1990). Oxidation of non-phenolic substrates: an expanded role for laccase in lignin biodegradation. FEBS Letters, 267(1), 99–102.

    Article  CAS  Google Scholar 

  22. Kirk, T. K., Croan, S., Tien, M., Murtagh, K. E., & Farrell, R. L. (1986). Production of multiple ligninases by Phanerochaete chrysosporium: effect of selected growth conditions and use of a mutant strain. Enzyme and Microbial Technology, 8(1), 27–32.

    Article  CAS  Google Scholar 

  23. Glenn, J. K., & Gold, M. H. (1983). Decolorization of several polymeric dyes by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Applied and Environmental Microbiology, 45(6), 1741–1747.

    CAS  Google Scholar 

  24. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  25. Ghose, T. K. (1987). Measurement of cellulase activities (recommendations of commission on biotechnology IUPAC). Pure and Applied Chemistry, 59(2), 257–268.

    Article  CAS  Google Scholar 

  26. Bailey, M. J., Biely, P., & Poutanen, K. (1992). Interlaboratory testing of methods for assay of xylanase activity. Journal of Biotechnology, 23(3), 257–270.

    Article  CAS  Google Scholar 

  27. Parry, N. J., Beever, D. E., Owen, E., Vandenberghe, I., Van Beeumen, J., & Bhat, M. K. (2001). Biochemical characterization and mechanism of action of a thermostable beta-glucosidase purified from Thermoascus aurantiacus. The Biochemical Journal, 353(1), 117–127.

    Article  CAS  Google Scholar 

  28. Aidoo, K. E., Hendry, R., & Wood, B. J. B. (1981). Estimation of fungal growth in a solid state fermentation system. European Journal of Applied Microbiology and Biotechnology, 12, 6–9.

    Article  CAS  Google Scholar 

  29. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., & Crocker, D. (2011). Determination of structural carbohydrates and lignin in biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, Co, USA. Technical Report: NREL/TP-510-42618

  30. Sluiter, A., Hames, B., Ruiz, R. O., Scarlata, C., Sluiter, J., & Templeton, D. (2008). Determination of ash in biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, Co, USA. Technical Report: NREL/TP-510-42622

  31. Resch, M. G., Baker, J. O., & Decker, S. R. (2015) Low solids enzymatic saccharification of lignocellulosic biomass. Laboratory Analytical Procedure (LAP). National Renewable Energy Laboratory, Golden, Co, USA. Technical Report: NREL/TP-5100-63351

  32. Ferraz, A., Parra, C., Freer, J., Baeza, J., & Rodrı´guez, J. (2000). Characterization of white zones produced on Pinus radiata wood chips by Ganoderma australe and Ceriporiopsis subvermispora. World Journal of Microbiology and Biotechnology, 16, 641–645.

    Article  Google Scholar 

  33. Sun, F.-h., Li, J., Yuan, Y.-x., Yan, Z.-y., & Liu, X.-f. (2011). Effect of biological pretreatment with Trametes hirsuta yj9 on enzymatic hydrolysis of corn stover. International Biodeterioration & Biodegradation, 65(7), 931–938.

    Article  CAS  Google Scholar 

  34. Sharma, R. K., & Arora, D. S. (2014). Bioprocessing of wheat and paddy straw for their nutritional up-gradation. Bioprocess and Biosystems Engineering, 37(7), 1437–1445.

    Article  CAS  Google Scholar 

  35. Hammel, K. E., Kapich, A. N., Jensen, K. A., & Ryan, Z. C. (2002). Reactive oxygen species as agents of wood decay by fungi. Enzyme and Microbial Technology, 30, 445–453.

    Article  CAS  Google Scholar 

  36. Arora, D. S., Chander, M., & Gill, P. K. (2002). Involvement of lignin peroxidase, manganese peroxidase and laccase in degradation and selective ligninolysis of wheat straw. International Biodeterioration & Biodegradation, 50, 115–120.

    Article  CAS  Google Scholar 

  37. Kang, S., Xiao, L., Meng, L., Zhang, X., & Sun, R. (2012). Isolation and structural characterization of lignin from cotton stalk treated in an ammonia hydrothermal system. International Journal of Molecular Sciences, 13(11), 15209–15226.

    Article  CAS  Google Scholar 

  38. Schoemaker, H. E., Harvey, P. J., Bowen, R. M., & Palmer, J. M. (1985). On the mechanism of enzymatic lignin breakdown. FEBS Letters, 183(1), 7–12.

    Article  CAS  Google Scholar 

  39. Wong, D. W. S. (2009). Structure and action mechanism of ligninolytic enzymes. Applied Biochemistry and Biotechnology, 157(2), 174–209.

    Article  CAS  Google Scholar 

  40. Faure, D., Bouillant, M. L., Jacoud, C., & Bally, R. (1996). Phenolic derivatives related to lignin metabolism as substrates for Azospirillum laccase activity. Phytochemistry, 42(95), 357–359.

    Article  CAS  Google Scholar 

  41. Kawai, S., Umezawa, T., & Higuchi, T. (1988). Degradation mechanisms of phenolic β-1 lignin substructure model compounds by laccase of Coriolus versicolor. Archives of Biochemistry and Biophysics, 262(1), 99–110.

    Article  CAS  Google Scholar 

  42. Lundquist, K., & Kristersson, P. (1985). Exhaustive laccase-catalysed oxidation of a lignin model compound (vanillyl glycol) produces methanol and polymeric quinoid products. Biochemical Journal, 229, 277–279.

    Article  CAS  Google Scholar 

  43. Reddy, G. V. B., Sridhar, M., & Gold, M. H. (2003). Cleavage of nonphenolic β-1 diarylpropane lignin model dimers by manganese peroxidase from Phanerochaete chrysosporium. European Journal of Biochemistry, 270(2), 284–292.

    Article  CAS  Google Scholar 

  44. Chen, Y.-r., Sarkanen, S., & Wang, Y.-Y. (2012). Lignin-degrading enzyme activities. Biomass Conversion, 908, 251–268.

    Article  CAS  Google Scholar 

  45. Srebotnik, E., Messner, K., & Foisner, R. (1988). Penetrability of white rot-degraded pine wood by the lignin peroxidase of Phanerochaete chrysosporium. Applied and Environmental Microbiology, 54(11), 2608–2614.

    CAS  Google Scholar 

  46. Balakshin, M. Y., Capanema, E. A., & Chang, H.-m. (2007). MWL fraction with a high concentration of lignin-carbohydrate linkages: isolation and 2D NMR spectroscopic analysis. Holzforschung, 61(1), 1–7.

    Article  CAS  Google Scholar 

  47. You, T.-T., Zhang, L.-M., Zhou, S.-K., & Xu, F. (2015). Structural elucidation of lignin-carbohydrate complex (LCC) preparations and lignin from Arundo donax Linn. Industrial Crops and Products, 71, 65–74.

    Article  CAS  Google Scholar 

  48. Panagiotou, G., Olavarria, R., & Olsson, L. (2007). Penicillium brasilianum as an enzyme factory; the essential role of feruloyl esterases for the hydrolysis of the plant cell wall. Journal of Biotechnology, 130(3), 219–228.

    Article  CAS  Google Scholar 

  49. Diaz, A. B., de Souza Moretti, M. M., Bezerra-Bussoli, C., Nunes, C. d. C. C., Blandino, A., da Silva, R., & Gomes, E. (2015). Evaluation of microwave-assisted pretreatment of lignocellulosic biomass immersed in alkaline glycerol for fermentable sugars production. Bioresource Technology, 185, 316–323.

    Article  CAS  Google Scholar 

  50. You, T.-T., Zhang, L.-M., & Xu, F. (2016). Progressive deconstruction of Arundo donax Linn. To fermentable sugars by acid catalyzed ionic liquid pretreatment. Bioresource Technology, 199, 271–274.

    Article  CAS  Google Scholar 

  51. Zeng, J., Singh, D., & Chen, S. (2011). Biological pretreatment of wheat straw by Phanerochaete chrysosporium supplemented with inorganic salts. Bioresource Technology, 102(3), 3206–3214.

    Article  CAS  Google Scholar 

  52. Singh, S., Varanasi, P., Singh, P., Adams, P. D., Auer, M., & Simmons, B. A. (2013). Understanding the impact of ionic liquid pretreatment on cellulose and lignin via thermochemical analysis. Biomass and Bioenergy, 54, 276–283.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Mr. Harmanpreet Meehnian gratefully acknowledges Ministry of Human Resource Development (MHRD), Government of India, for providing the fellowship during the study. All authors are highly thankful to National Institute of Technology (NIT), Jalandhar, for providing grants and administrative supports for the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asim K Jana.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

ESM 1

(DOCX 100 kb)

ESM 2

(DOCX 19 kb)

ESM 3

(DOCX 26 kb)

ESM 4

(DOCX 17 kb)

ESM 5

(DOCX 368 kb)

ESM 6

(DOCX 14 kb)

ESM 7

(DOCX 12 kb)

ESM 8

(DOCX 12 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meehnian, H., Jana, A.K. Cotton Stalk Pretreatment Using Daedalea flavida, Phlebia radiata, and Flavodon flavus: Lignin Degradation, Cellulose Recovery, and Enzymatic Saccharification. Appl Biochem Biotechnol 181, 1465–1484 (2017). https://doi.org/10.1007/s12010-016-2296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2296-0

Keywords

Navigation