Skip to main content
Log in

In Vitro and in Vivo Anticancer Activity of Sophorolipids to Human Cervical Cancer

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Six characteristic di-acetylated lactonic sophorolipids with C16:1, C16:0, C18:0, C18:1, C18:2, and C18:3 fatty acid were obtained from Starmerella bombicola CGMCC 1576. In order to confirm their anticancer activity against human cervical cancer cells and reveal the structure-activity relationships, their anti-proliferation effects on HeLa and CaSki cells were estimated. The cytotoxicity of sophorolipid molecules with different degrees of unsaturation was proved to be influenced by carbon chain length of sophorolipids. The longer the carbon chain length, the stronger the cytotoxicity of sophorolipids. The inhibitory mechanism of a di-acetylated lactonic C18:1 sophorolipid on HeLa cells was investigated. The cells developed many features of apoptosis and cell cycle was blocked at G0 phase and partly at G2 phase. The expression of CHOP and Bip/GRP78 was induced. Caspase-12 and caspase-3 were both activated. However, mitochondrial membrane potential and concentration of cytosolic cytochrome C did not change. The induced apoptosis of HeLa cells was probably triggered through endoplasmic reticulum signaling pathway without involvement of mitochondria. In vivo, 5, 50, and 500 mg/kg lactonic sophorolipids showed 29.90, 41.24, and 52.06 % of inhibition without significant toxicity to tumor-bearing mice, respectively. Our findings may suggest a potential use of sophorolipids in human cervical cancer treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

SLs:

Sophorolipids

C18:3 DLSL:

Di-acetylated lactonic SL with a C18:3 fatty acid

C18:2 DLSL:

Di-acetylated lactonic SL with a C18:2 fatty acid

C18:1 DLSL:

Di-acetylated lactonic SL with a C18:1 fatty acid

C18:0 DLSL:

Di-acetylated lactonic SL with a C18:0 fatty acid

C16:1 DLSL:

Di-acetylated lactonic SL with a C16:1 fatty acid

C16:0 DLSL:

Di-acetylated lactonic SL with a C16:0 fatty acid

HPLC:

High-performance liquid chromatography

MTT:

3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenytetrazolium

TEM:

Transmission electron microscopy

MMP:

Mitochondrial membrane potential

ER:

Endoplasmic reticulum

References

  1. Daniyal, M., Akhtar, N., Ahmad, S., Fatima, U., Akram, M., & Asif, H. M. (2015). Update knowledge on cervical cancer incidence and prevalence in Asia. Asian Pacific Journal of Cancer Prevention, 16, 3617–3620.

    Article  Google Scholar 

  2. Isoda, H., Kitamoto, D., Shinmoto, H., Matsumura, M., & Nakahara, T. (1997). Microbial extracellular glycolipid induction of differentiation and inhibition of the protein kinase C activity of human promyelocytic leukemia cell line HL60. Bioscience Biotechnology and Biochemistry, 61, 609–614.

    Article  CAS  Google Scholar 

  3. Fu, S. L., Wallner, S. R., Bowne, W. B., Hagler, M. D., Zenilman, M. E., Gross, R., & Bluth, M. H. (2008). Sophorolipids and their derivatives are lethal against human pancreatic cancer cells. Journal of Surgical Research, 148, 77–82.

    Article  CAS  Google Scholar 

  4. Chen, J., Song, X., Zhang, H., & Qu, Y. (2006a). Production, structure elucidation and anticancer properties of sophorolipid from Wickerhamiella domercqiae. Enzyme and Microbial Technology, 39, 501–506.

    Article  CAS  Google Scholar 

  5. Joshi-Navare, K., Shiras, A., & Prabhune, A. (2011). Differentiation-inducing ability of sophorolipids of oleic and linoleic acids using a glioma cell line. Biotechnology Journal, 6, 509–512.

    Article  CAS  Google Scholar 

  6. Shao, L., Song, X., Ma, X., Li, H., & Qu, Y. (2012). Bioactivities of sophorolipid with different structures against human esophageal cancer cells. Journal of Surgical Research, 173, 286–291.

    Article  CAS  Google Scholar 

  7. Ribeiro, I. A., Faustino, C. M., Guerreiro, P. S., Frade, R. F., Bronze, M. R., Castro, M. F., & Ribeiro, M. H. (2015). Development of novel sophorolipids with improved cytotoxic activity toward MDA-MB-231 breast cancer cells. Journal of Molecular Recognition, 28, 155–165.

    Article  CAS  Google Scholar 

  8. Cavalero, D. A., & Cooper, D. G. (2003). The effect of medium composition on the structure and physical state of sophorolipids produced by Candida bombicola ATCC 22214. Journal of Biotechnology, 103, 31–41.

    Article  CAS  Google Scholar 

  9. Borsanyiova, M., Patil, A., Mukherji, R., Prabhune, A., & Bopegamage, S. (2016). Biological activity of sophorolipids and their possible use as antiviral agents. Folia Microbiologica, 61, 85–89.

    Article  CAS  Google Scholar 

  10. Chen, J., Song, X., Zhang, H., Qu, Y. B., & Miao, J. Y. (2006b). Sophorolipid produced from the new yeast strain Wickerhamiella domercqiae induces apoptosis in H7402 human liver cancer cells. Applied Microbiology and Biotechnology, 72, 52–59.

    Article  CAS  Google Scholar 

  11. Li, J., Li, H., Li, W., Xia, C., & Song, X. (2016). Identification and characterization of a flavin-containing monooxygenase MoA and its function in a specific sophorolipid molecule metabolism in Starmerella bombicola. Applied Microbiology and Biotechnology, 100, 1307–1318.

    Article  CAS  Google Scholar 

  12. Li, H., Ma, X., Shao, L., Shen, J., & Song, X. (2012). Enhancement of sophorolipid production of Wickerhamiella domercqiae var. sophorolipid CGMCC 1576 by low-energy ion beam implantation. Applied Biochemistry and Biotechnology, 167, 510–523.

    Article  CAS  Google Scholar 

  13. Li, H., Ma, X. J., Wang, S., & Song, X. (2013). Production of sophorolipids with eicosapentaenoic acid and docosahexaenoic acid from Wickerhamiella domercqiae var. sophorolipid using fish oil as a hydrophobic carbon source. Biotechnology Letters, 35, 901–908.

    Article  CAS  Google Scholar 

  14. Su, L., Zhao, J., Zhao, B. X., Miao, J. Y., Yin, D. L., & Zhang, S. L. (2006). Safrole oxide induced human umbilical vein vascular endothelial cell differentiation into neuron-like cells by depressing the reactive oxygen species level at the low concentration. Biochimica et Biophysica Acta, 1763, 247–253.

    Article  CAS  Google Scholar 

  15. Wang, Y. B., Lou, Y., Luo, Z. F., Zhang, D. F., & Wang, Y. Z. (2003). Induction of apoptosis and cell cycle arrest by polyvinylpyrrolidone K-30 and protective effect of α-tocopherol. Biochemical and Biophysical Research Communications, 308, 878–884.

    Article  CAS  Google Scholar 

  16. Lee, C., Lee, S., Shin, S. G., & Hwang, S. (2008). Real-time PCR determination of rRNA gene copy number: absolute and relative quantification assays with Escherichia coli. Applied Microbiology and Biotechnology, 78, 371–376.

    Article  CAS  Google Scholar 

  17. Chen, D., Cui, Q. C., Yang, H., Barrea, R. A., Sarkar, F. H., Sheng, S., Yan, B., Reddy, G. P., & Dou, Q. P. (2007). Clioquinol, a therapeutic agent for Alzheimer’s disease, has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts. Cancer Research, 67, 1636–1644.

    Article  CAS  Google Scholar 

  18. Gupta, R., & Prabhune, A. A. (2012). Structural determination and chemical esterification of the sophorolipids produced by Candida bombicola grown on glucose and α-linolenic acid. Biotechnology Letters, 34, 701–707.

    Article  CAS  Google Scholar 

  19. Ranke, J., Molter, K., Stock, F., Bottin-Weber, U., Poczobutt, J., Hoffmann, J., Ondruschka, B., Filser, J., & Jastorff, B. (2004). Biological effects of imidazolium ionic liquids with varying chain lengths in acute Vibrio fischeri and WST-1 cell viability assays. Ecotoxicology and Environmental Safety, 58, 396–404.

    Article  CAS  Google Scholar 

  20. Ranke, J., Müller, A., Bottin-Weber, U., Stock, F., Stolte, S., Arning, J., Störmann, R., & Jastorff, B. (2007). Lipophilicity parameters for ionic liquid cations and their correlation to in vitro cytotoxicity. Ecotoxicology and Environmental Safety, 67, 430–438.

    Article  CAS  Google Scholar 

  21. McKeage, M. J., Berners-Price, S. J., Galettis, P., Bowen, R. J., Brouwer, W., Ding, L., Zhuang, L., & Baguley, B. C. (2000). Role of lipophilicity in determining cellular uptake and antitumour activity of gold phosphine complexes. Cancer Chemotherapy and Pharmacology, 46, 343–350.

    Article  CAS  Google Scholar 

  22. Horie, Y., Nemoto, H., Itoh, M., Kosaka, H., & Morita, K. (2016). Fermented brown rice extract causes apoptotic death of human acute lymphoblastic leukemia cells via death receptor pathway. Applied Biochemistry and Biotechnology, 178, 1599–1611.

    Article  CAS  Google Scholar 

  23. Song, W., Li, S. S., Qiu, P. P., Shen, D. Y., Tian, L., Zhang, Q. Y., Liao, L. X., & Chen, Q. X. (2013). Apoptosis induced by aqueous extracts of crocodile bile in human heptacarcinoma SMMC-7721. Applied Biochemistry and Biotechnology, 170, 15–24.

    Article  CAS  Google Scholar 

  24. Song, W., Yang, H. B., Chen, P., Wang, S. M., Zhao, L. P., Xu, W. H., Fan, H. F., Gu, X., & Chen, L. Y. (2013). Apoptosis of human gastric carcinoma SGC-7901 induced by deoxycholic acid via the mitochondrial-dependent pathway. Applied Biochemistry and Biotechnology, 171, 1061–1071.

    Article  CAS  Google Scholar 

  25. Nakagawa, T., Zhu, H., Morishima, N., Li, E., Xu, J., Yankner, B. A., & Yuan, J. (2000). Caspase-12 mediates endoplasmic-reticulum-specific apoptosis and cytotoxicity by amyloid-beta. Nature, 403, 98–103.

    Article  CAS  Google Scholar 

  26. Choi, A. Y., Choi, J. H., Yoon, H., Hwang, K. Y., Noh, M. H., Choe, W., Yoon, K. S., Ha, J., Yeo, E. J., & Kang, I. (2011). Luteolin induces apoptosis through endoplasmic reticulum stress and mitochondrial dysfunction in Neuro-2a mouse neuroblastoma cells. European Journal of Pharmacology, 668, 115–126.

    Article  CAS  Google Scholar 

  27. Park, I. J., Kim, M. J., Park, O. J., Choe, W., Kang, I., Kim, S. S., & Ha, J. (2012). Cryptotanshinone induces ER stress-mediated apoptosis in HepG2 and MCF7 cells. Apoptosis, 17, 248–257.

    Article  CAS  Google Scholar 

  28. Cheng, S., Swanson, K., Eliaz, I., Mcclintick, J. N., Sandusky, G. E., & Sliva, D. (2015). Pachymic acid inhibits growth and induces apoptosis of pancreatic cancer in vitro and in vivo by targeting ER stress. PloS One, 10, e0122270.

    Article  Google Scholar 

  29. Gorman, A. M., Healy, S. J., Jager, R., & Samali, A. (2012). Stress management at the ER: regulators of ER stress-induced apoptosis. Pharmacology and Therapeutics, 134, 306–316.

    Article  CAS  Google Scholar 

  30. Zinszner, H., Kuroda, M., Wang, X., Batchvarova, N., Lightfoot, R. T., Remotti, H., Stevens, J. L., & Ron, D. (1998). CHOP is implicated in programmed cell death in response to impaired function of the endoplasmic reticulum. Genes and Development, 12, 982–995.

    Article  CAS  Google Scholar 

  31. Oyadomari, S., Takeda, K., Takiguchi, M., Gotoh, T., Matsumoto, M., Wada, I., Akira, S., Araki, E., & Mori, M. (2001). Nitric oxide-induced apoptosis in pancreatic beta cells is mediated by the endoplasmic reticulum stress pathway. Proceedings of the National Academy of Sciences of the United States of America, 98, 10845–10850.

    Article  CAS  Google Scholar 

  32. Li, J., & Lee, A. S. (2006). Stress induction of GRP78/BiP and its role in cancer. Current Molecular Medicine, 6, 45–54.

    Article  CAS  Google Scholar 

  33. Tagliarino, C., Pink, J. J., Dubyak, G. R., Nieminen, A. L., & Boothman, D. A. (2001). Calcium is a key signaling molecule in β-lapachone-mediated cell death. Journal of Biological Chemistry, 276, 19150–19159.

    Article  CAS  Google Scholar 

  34. Zheng, J. H., Shi, D., Zhao, Y., & Chen, Z. L. (2006). Role of calcium signal in apoptosis and protective mechanism of colon cancer cell line SW480 in response to 5-aminolevulinic acid-photodynamic therapy. Ai Zheng, 25, 683–688 in Chinese.

    CAS  Google Scholar 

  35. Xie, Q., Khaoustov, V. I., Chung, C. C., Sohn, J., Krishnan, B., Lewis, D. E., & Yoffe, B. (2002). Effect of tauroursodeoxycholic acid on endoplasmic reticulum stress-induced caspase-12 activation. Hepatology, 36, 592–601.

    Article  CAS  Google Scholar 

  36. Yeh, T. C., Chiang, P. C., Li, T. K., Hsu, J. L., Lin, C. J., Wang, S. W., Peng, C. Y., & Guh, J. H. (2007). Genistein induces apoptosis in human hepatocellular carcinomas via interaction of endoplasmic reticulum stress and mitochondrial insult. Biochemical Pharmacology, 73, 782–792.

    Article  CAS  Google Scholar 

  37. Monteiro, H. P., Silva, E. F., & Stern, A. (2004). Nitric oxide: a potential inducer of adhesion-related apoptosis—anoikis. Nitric Oxide Biology & Chemistry, 10, 1–10.

    Article  CAS  Google Scholar 

  38. Gein, S. V., Kuyukina, M. S., Ivshina, I. B., Baeva, T. A., & Chereshnev, V. A. (2011). In vitro cytokine stimulation assay for glycolipid biosurfactant from Rhodococcus ruber: role of monocyte adhesion. Cytotechnology, 63, 559–566.

    Article  CAS  Google Scholar 

  39. Paoli, P., Giannoni, E., & Chiarugi, P. (2013). Anoikis, molecular pathways and its role in cancer progression. Biochimica et Biophysica Acta, 1833, 3481–3498.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study was funded by the National Natural Science Foundation of China (No. 30970052 and No. 31270089), Natural Science Foundation of Shandong Province (ZR2009BZ002), and National Key Technology R&D Program (2011BAC02B04). We thank Professor Yaoqin Gong for providing HeLa cells. We also thank Professor Junying Miao for donating HUVECs cells.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Song.

Electronic supplementary material

ESM 1

(DOCX 75 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H., Guo, W., Ma, Xj. et al. In Vitro and in Vivo Anticancer Activity of Sophorolipids to Human Cervical Cancer. Appl Biochem Biotechnol 181, 1372–1387 (2017). https://doi.org/10.1007/s12010-016-2290-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2290-6

Keywords

Navigation