Skip to main content
Log in

Use of Bacillus amyloliquefaciens HZ-12 for High-Level Production of the Blood Glucose Lowering Compound, 1-Deoxynojirimycin (DNJ), and Nutraceutical Enriched Soybeans via Fermentation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

1-Deoxynojirimycin (DNJ) is an efficient α-glucosidase inhibitor (α-GI) with potential applications in the prevention and treatment of diabetes. In this study, 16 Bacillus strains were screened for α-GI rate, and the strain HZ-12 with the highest α-GI rate was identified as Bacillus amyloliquefaciens through the analysis of physiological biochemical characteristics and 16S rDNA sequence. By LC-MS/Q-TOF analysis, the α-GI component produced by B. amyloliquefaciens HZ-12 was identified as DNJ. Soybean was used as the substrate for the solid-state fermentation; 870 mg/kg DNJ was produced by B. amyloliquefaciens HZ-12 after optimizing the fermentation conditions and media, which was 3.83-fold higher than the initial yield. Also, evaluations of nutraceutical enrichment in the form of anticoagulant activity, antioxidant activity, total nitrogen (TN), and total reducing sugars (TRS) of the B. amyloliquefaciens HZ-12 fermented soybeans were substantially higher than unfermented soybeans. This study provided a promising strain for high-level production of DNJ and produced nutraceutical enriched soybeans by fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aguilar, A. L., Escribano, J., Wentworth Jr., P., & Butters, T. D. (2014). Synthetic 1-deoxynojirimycin N-substituted peptides offer prolonged disruption to N-linked glycan processing. Chem. Med. Chem, 9, 2809–2813.

    Article  CAS  Google Scholar 

  2. Ahuja, V., & Chou, C. H. (2016). Novel therapeutics for diabetes: uptake, usage trends, and comparative effectiveness. Current Diabetes Reports, 16, 47.

    Article  Google Scholar 

  3. Andrew, V. R., Anne, S., Jie, F., & Inder, K. V. (2004). Synthesis of a novel photoaffinity derivative of 1-deoxynojirimycin for active site-directed labeling of glucosidase I. Glycobiology, 14, 301–310.

    Article  Google Scholar 

  4. Asai, A., Nakagawa, K., Higuchi, O., Kimura, T., Kojima, Y., Kariya, J., Miyazawa, T., & Oikawa, S. (2011). Effect of mulberry leaf extract with enriched 1-deoxynojirimycin content on postprandial glycemic control in subjects with impaired glucose metabolism. J. Diabetes Investig, 2, 318–323.

    Article  CAS  Google Scholar 

  5. Asano, N. (2009). Sugar-mimicking glycosidase inhibitors: bioactivity and application. Cellular and Molecular Life Sciences, 66, 1479–1492.

    Article  CAS  Google Scholar 

  6. Baby Joseph, B. D., Hena, V., & Raj, J. (2013). Bacteriocin from Bacillus subtilis as a novel drug against diabetic foot ulcer bacterial pathogens. Asian Pac J Trop Biomed, 3, 942–946.

    Article  Google Scholar 

  7. Bei-Zhong Han, F. M. R., & Robert Nout, M. J. (2001). A Chinese fermented soybean food. International Journal of Food Microbiology, 65, 1–10.

    Article  Google Scholar 

  8. Butters, T. D., Dwek, R. A., & Platt, F. M. (2003). Therapeutic applications of imino sugars in lysosomal storage disorders. Current Topics in Medicinal Chemistry, 3, 561–574.

    Article  CAS  Google Scholar 

  9. Byun, B. Y., & Mah, J. H. (2012). Occurrence of biogenic amines in Miso, Japanese traditional fermented soybean paste. Journal of Food Science, 77, T216–T223.

    Article  Google Scholar 

  10. Chen, J., Cheng, Y.-Q., Yamaki, K., & Li, L.-T. (2007). Anti-α-glucosidase activity of Chinese traditionally fermented soybean (douchi). Food Chemistry, 103, 1091–1096.

    Article  CAS  Google Scholar 

  11. Chen, X. H., Koumoutsi, A., Scholz, R., Eisenreich, A., Schneider, K., Heinemeyer, I., Morgenstern, B., Voss, B., Hess, W. R., Reva, O., Junge, H., Voigt, B., Jungblut, P. R., Vater, J., Sussmuth, R., Liesegang, H., Strittmatter, A., Gottschalk, G., & Borriss, R. (2007). Comparative analysis of the complete genome sequence of the plant growth-promoting bacterium Bacillus amyloliquefaciens FZB42. Nature Biotechnology, 25, 1007–1014.

    Article  CAS  Google Scholar 

  12. Do, H. J., Chung, J. H., Hwang, J. W., Kim, O. Y., Lee, J. Y., & Shin, M. J. (2015). 1-Deoxynojirimycin isolated from Bacillus subtilis improves hepatic lipid metabolism and mitochondrial function in high-fat-fed mice. Food and Chemical Toxicology, 75, 1–7.

    Article  CAS  Google Scholar 

  13. Eom, J. S., & Choi, H. S. (2016). Inhibition of Bacillus cereus growth and toxin production by Bacillus amyloliquefaciens RD7-7 in fermented soybean products. Journal of Microbiology and Biotechnology, 26, 44–55.

    Article  CAS  Google Scholar 

  14. Horton, E. S. (1995). NIDDM—the devastating disease. Diabetes Research and Clinical Practice, 28, S3–S11.

    Article  Google Scholar 

  15. Jiang, P., Mu, S., Li, H., Li, Y., Feng, C., Jin, J. M., & Tang, S. Y. (2015). Design and application of a novel high-throughput screening technique for 1-deoxynojirimycin. Scientific Reports, 5, 8563.

    Article  CAS  Google Scholar 

  16. Juan, M. Y., & Chou, C. C. (2010). Enhancement of antioxidant activity, total phenolic and flavonoid content of black soybeans by solid state fermentation with Bacillus subtilis BCRC 14715. Food Microbiology, 27, 586–591.

    Article  CAS  Google Scholar 

  17. Kang, K. D., Cho, Y. S., Song, J. H., Park, Y. S., Lee, J. Y., Hwang, K. Y., Rhee, S. K., Chung, J. H., Kwon, O., & Seong, S. I. (2011). Identification of the genes involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85. Journal of Microbiology, 49, 431–440.

    Article  CAS  Google Scholar 

  18. Kim, J. W., Kim, S. U., Lee, H. S., Kim, I., Ahn, M. Y., & Ryu, K. S. (2003). Determination of 1-deoxynojirimycin in Morus alba L. leaves by derivatization with 9-fluorenylmethyl chloroformate followed by reversed-phase high-performance liquid chromatography. Journal of Chromatography. A, 1002, 93–99.

    Article  CAS  Google Scholar 

  19. Kimura, T., Nakagawa, K., Kubota, H., Kojima, Y., Goto, Y., Yamagishi, K., Oita, S., Oikawa, S., & Miyazawa, T. (2007). Food-grade mulberry powder enriched with 1-deoxynojirimycin suppresses the elevation of postprandial blood glucose in humans. Journal of Agricultural and Food Chemistry, 55, 5869–5874.

    Article  CAS  Google Scholar 

  20. Kimura, T., Nakagawa, K., Saito, Y., Yamagishi, K., Suzuki, M., Yamaki, K., Shinmoto, H., & Miyazawa, T. (2004). Simple and rapid determination of 1-deoxynojirimycin in mulberry leaves. Bio. Factors, 22, 341–345.

    CAS  Google Scholar 

  21. Ko, B. K., Ahn, H. J., van den Berg, F., Lee, C. H., & Hong, Y. S. (2009). Metabolomic insight into soy sauce through (1)H NMR spectroscopy. Journal of Agricultural and Food Chemistry, 57, 6862–6870.

    Article  CAS  Google Scholar 

  22. Kobayashi, D., Takamura, M., Murai, H., Usui, S., Ikeda, T., Inomata, J., Takashima, S., Kato, T., Furusho, H., Takeshita, Y., Ota, T., Takamura, T., & Kaneko, S. (2010). Effect of pioglitazone on muscle sympathetic nerve activity in type 2 diabetes mellitus with alpha-glucosidase inhibitor. Autonomic Neuroscience, 158, 86–91.

    Article  CAS  Google Scholar 

  23. Li, Y. G., Ji, D. F., Zhong, S., Lin, T. B., & Lv, Z. Q. (2015). Hypoglycemic effect of deoxynojirimycin-polysaccharide on high fat diet and streptozotocin-induced diabetic mice via regulation of hepatic glucose metabolism. Chemico-Biological Interactions, 225, 70–79.

    Article  CAS  Google Scholar 

  24. Li, Y. G., Ji, D. F., Zhong, S., Lin, T. B., Lv, Z. Q., Hu, G. Y., & Wang, X. (2013). 1-deoxynojirimycin inhibits glucose absorption and accelerates glucose metabolism in streptozotocin-induced diabetic mice. Scientific Reports, 3, 1377.

    Google Scholar 

  25. Lijun, Y., Lite, L., Zaigui, L., Tatsumi, E., & Saito, M. (2004). Changes in isoflavone contents and composition of sufu (fermented tofu) during manufacturing. Food Chemistry, 87, 587–592.

    Article  Google Scholar 

  26. Mo, H., Kariluoto, S., Piironen, V., Zhu, Y., Sanders, M. G., Vincken, J. P., Wolkers-Rooijackers, J., & Nout, M. J. (2013). Effect of soybean processing on content and bioaccessibility of folate, vitamin B12 and isoflavones in tofu and tempe. Food Chemistry, 141, 2418–2425.

    Article  CAS  Google Scholar 

  27. Moy, Y. S., Lu, T. J., & Chou, C. C. (2012). Volatile components of the enzyme-ripened sufu, a Chinese traditional fermented product of soy bean. Journal of Bioscience and Bioengineering, 113, 196–201.

    Article  CAS  Google Scholar 

  28. Onose, S., Ikeda, R., Nakagawa, K., Kimura, T., Yamagishi, K., Higuchi, O., & Miyazawa, T. (2013). Production of the alpha-glycosidase inhibitor 1-deoxynojirimycin from Bacillus species. Food Chemistry, 138, 516–523.

    Article  CAS  Google Scholar 

  29. Parisod, H., Pakarinen, A., Kauhanen, L., Aromaa, M., Leppanen, V., Liukkonen, T. N., Smed, J., & Salantera, S. (2014). Promoting children’s health with digital games: a review of reviews. Games Health J, 3, 145–156.

    Article  Google Scholar 

  30. Peng, Y., Huang, Q., Zhang, R. H., & Zhang, Y. Z. (2003). Purification and characterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comparative Biochemistry and Physiology. Part B, Biochemistry & Molecular Biology, 134, 45–52.

    Article  Google Scholar 

  31. Rahati, S., Shahraki, M., Arjomand, G., & Shahraki, T. (2014). Food pattern, lifestyle and diabetes mellitus. Int. J. High Risk Behav. Addict, 3, e8725.

    Article  Google Scholar 

  32. Scheraga, H. A. (2004). The thrombin-fibrinogen interaction. Biophysical Chemistry, 112, 117–130.

    Article  CAS  Google Scholar 

  33. Standl, E., & Schnell, O. (2012). Alpha-glucosidase inhibitors 2012—cardiovascular considerations and trial evaluation. Diabetes & Vascular Disease Research, 9, 163–169.

    Article  Google Scholar 

  34. Thomas, P. (2004). Isolation of Bacillus pumilus from in vitro grapes as a long-term alcohol-surviving and rhizogenesis inducing covert endophyte. Journal of Applied Microbiology, 97, 114–123.

    Article  CAS  Google Scholar 

  35. Vichasilp, C., Nakagawa, K., Sookwong, P., Higuchi, O., Kimura, F., & Miyazawa, T. (2012). A novel gelatin crosslinking method retards release of mulberry 1-deoxynojirimycin providing a prolonged hypoglycaemic effect. Food Chemistry, 134, 1823–1830.

    Article  CAS  Google Scholar 

  36. Wei, X., Luo, M., Xu, L., Zhang, Y., Lin, X., Kong, P., & Liu, H. (2011). Production of fibrinolytic enzyme from Bacillus amyloliquefaciens by fermentation of chickpeas, with the evaluation of the anticoagulant and antioxidant properties of chickpeas. Journal of Agricultural and Food Chemistry, 59, 3957–3963.

    Article  CAS  Google Scholar 

  37. Wijaya-Erhardt, M., Muslimatun, S., & Erhardt, J. G. (2011). Fermented soyabean and vitamin C-rich fruit: a possibility to circumvent the further decrease of iron status among iron-deficient pregnant women in Indonesia. Public Health Nutrition, 14, 2185–2196.

    Article  Google Scholar 

  38. Xu, B. J., Yuan, S. H., & Chang, S. K. (2007). Comparative analyses of phenolic composition, antioxidant capacity, and color of cool season legumes and other selected food legumes. Journal of Food Science, 72, S167–S177.

    Article  CAS  Google Scholar 

  39. Yoneda, C., Tashima-Horie, K., Fukushima, S., Saito, S., Tanaka, S., Haruki, T., Ogino, J., Suzuki, Y., & Hashimoto, N. (2016). Association of morning fasting blood glucose variability with insulin antibodies and clinical factors in type 1 diabetes. Endocrine Journal, 63(7), 603–609.

    Article  Google Scholar 

  40. Yun-Gang Jiang, C.-Y. W., Jin, C., Jia, J.-Q., Guo, X., Zhang, G.-Z., & Gui, Z.-Z. (2014). Improved 1-deoxynojirimycin (DNJ) production in mulberry leaves fermented by microorganism. Brazilian Journal of Microbiology, 45, 721–729.

    Article  Google Scholar 

  41. Zhu, Y. P., Yamaki, K., Yoshihashi, T., Ohnishi Kameyama, M., Li, X. T., Cheng, Y. Q., Mori, Y., & Li, L. T. (2010). Purification and identification of 1-deoxynojirimycin (DNJ) in okara fermented by Bacillus subtilis B2 from Chinese traditional food (Meitaoza). Journal of Agricultural and Food Chemistry, 58, 4097–4103.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31501468), the National Science & Technology Pillar Program during the Twelfth Five-Year Plan Period (2013AA102801-52), and the Opening Project of State Key Laboratory of Agricultural Microbiology (AMLKF201403).

Authors’ Contributions

X Wei and S Chen designed the study. D Cai, M Liu, and X Li carried out the experiments for this study. D Cai, X Wei, Q Wang, C.T. Nomura, and S Chen analyzed the data and wrote the manuscript. All authors read and approved the final manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shouwen Chen.

Ethics declarations

Competing Interests

The authors declare that they have no competing interests.

Electronic supplementary material

ESM 1

(DOC 180 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, D., Liu, M., Wei, X. et al. Use of Bacillus amyloliquefaciens HZ-12 for High-Level Production of the Blood Glucose Lowering Compound, 1-Deoxynojirimycin (DNJ), and Nutraceutical Enriched Soybeans via Fermentation. Appl Biochem Biotechnol 181, 1108–1122 (2017). https://doi.org/10.1007/s12010-016-2272-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2272-8

Keywords

Navigation