Skip to main content
Log in

Physical and Covalent Immobilization of Lipase onto Amine Groups Bearing Thiol-Ene Photocured Coatings

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this study, amine groups containing thiol-ene photocurable coating material for lipase immobilization were prepared. Lipase (EC 3.1.1.3) from Candida rugosa was immobilized onto the photocured coatings by physical adsorption and glutaraldehyde-activated covalent bonding methods, respectively. The catalytic efficiency of the immobilized and free enzymes was determined for the hydrolysis of p-nitrophenyl palmitate and also for the synthesis of p-nitrophenyl linoleate. The storage stability and the reusability of the immobilized enzyme and the effect of temperature and pH on the catalytic activities were also investigated. The optimum pH for free lipase and physically immobilized lipase was determined as 7.0, while it was found as 7.5 for the covalent immobilization. After immobilization, the optimum temperature increased from 37 °C (free lipase) to 50–55 °C. In the end of 15 repeated cycles, covalently bounded enzyme retained 60 and 70 % of its initial activities for hydrolytic and synthetic assays, respectively. While the physically bounded enzyme retained only 56 % of its hydrolytic activity and 67 % of its synthetic activity in the same cycle period. In the case of hydrolysis V max values slightly decreased after immobilization. For synthetic assay, the V max value for the covalently immobilized lipase was found as same as free lipase while it decreased dramatically for the physically immobilized lipase. Physically immobilized enzyme was found to be superior over covalent bonding in terms of enzyme loading capacity and optimum temperature and exhibited comparable re-use values and storage stability. Thus, a fast, easy, and less laborious method for lipase immobilization was developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Scheme 3
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Villalonga, R., Fujii, A., Shinohara, H., Tachibana, S., & Asano, Y. (2008). Covalent immobilization of phenylalanine dehydrogenase on cellulose membrane for biosensor construction. Sensors and Actuators B, 129, 195–199.

    Article  CAS  Google Scholar 

  2. Kadima, T., & Pickard, M. (1990). Immobilization of chloroperoxidase on aminopropyl-glass. Applied Environmental Microbiology, 56, 3473–3477.

    CAS  Google Scholar 

  3. Iyer, P. V., & Ananthanarayan, L. (2008). Enzyme stability and stabilization—aqueous and non-aqueous environment. Process Biochemistry, 43, 1019–1032.

    Article  CAS  Google Scholar 

  4. Wang, Z.-G., Wan, L.-S., Liu, Z.-M., Huang, X.-J., & Xu, Z.-K. (2009). Enzyme immobilization on electrospun polymer nanofibers: an overview. Journal of Molecular Catalysis B: Enzymatic, 56, 189–195.

    Article  CAS  Google Scholar 

  5. Tischer, W., & Wedekind, F. (1999). Immobilized enzymes: methods and applications. Topics in Current Chemistry, 200, 95–126.

    Article  CAS  Google Scholar 

  6. Sheldon, R. A. (2007). Enzyme immobilization: the quest for optimum performance. Advanced Synthesis & Catalysis, 349, 1289–1307.

    Article  CAS  Google Scholar 

  7. Bajpai, A. K., & Bhanu, S. (2003). Immobilization of alpha-amylase in vinyl-polymer-based interpenetrating polymer networks. Colloid and Polymer Science, 282, 76–83.

    Article  CAS  Google Scholar 

  8. Guisan, J. M. (2006). Immobilization of enzymes and cells. Totowa, New Jersey: Humana Press Inc.

    Book  Google Scholar 

  9. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  10. Pujari, N. S., Vaidya, B. K., Bagalkote, S., Ponrathnam, S., & Nene, S. (2006). Poly(urethane methacrylate-co-glycidyl methacrylate)-supported-polypropylene biphasic membrane for lipase immobilization. Journal of Membrane Science, 285, 395–403.

    Article  CAS  Google Scholar 

  11. Hasirci, N., Aksoy, S., & Tumturk, H. (2006). Activation of poly(dimer acid-co-alkyl polyamine) particles for covalent immobilization of a-amylase. Reactive and Functional Polymers, 66, 1546–1551.

    Article  CAS  Google Scholar 

  12. Goddard, J. M., & Hotchkiss, J. H. (2007). Polymer surface modification for the attachment of bioactive compounds. Progress in Polymer Science, 32, 698–725.

    Article  CAS  Google Scholar 

  13. Turunc, O., Kahraman, M. V., Akdemir, Z. S., Kayaman-Apohan, N., & Gungor, A. (2009). Immobilization of a-amylase onto cyclic carbonate bearing hybrid material. Food Chemistry, 112, 992–997.

    Article  CAS  Google Scholar 

  14. Dos Santos, J. C. S., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Importance of the support properties for immobilization or purification of enzymes. ChemCatChem, 7, 2413–2432.

    Article  CAS  Google Scholar 

  15. Kazlauskas, R. J., & Bornscheuer, U. T. (1998). Biotechnology set. In H. J. Rehm, G. Pihler, A. Stadler, & P. J. W. Kelly (Eds.), (pp. 37–192). Weinheim, Germany: Wiley-VCH Verlag GmbH.

    Google Scholar 

  16. Hung, T.-C., Giridhar, R., Chiou, S.-H., & Wu, W.-T. (2003). Binary immobilization of Candida rugosa lipase on chitosan. Journal of Molecular Catalysis B: Enzymatic, 26, 69–78.

    Article  CAS  Google Scholar 

  17. Sharma, R., Chisti, Y., & Banerjee, U. C. (2001). Production, purification, characterization, and applications of lipases. Biotechnology Advances, 19, 627–662.

    Article  CAS  Google Scholar 

  18. Kent, J. A. (2007). Kent and Riegel’s handbook of industrial chemistry and biotechnology. Boston: Springer US.

    Book  Google Scholar 

  19. Verger, R. (1997). Interfacial activation of lipases: facts and artifacts. Trends in Biotechnology, 15, 32–38.

    Article  CAS  Google Scholar 

  20. Reis, P., Holmberg, K., Watzke, H., Leser, M. E., & Miller, R. (2009). Lipases at interfaces: a review. Advances in Colloid and Interface Science, 148, 237–250.

    Article  Google Scholar 

  21. Derewenda, U., Brzozowski, A. M., Lawson, D. M., & Derewenda, Z. S. (1992). Catalysis at the interface: the anatomy of a conformational change in a triglyceride lipase. Biochemistry, 31, 1532–1541.

    Article  CAS  Google Scholar 

  22. Derewenda, Z. S., Derewenda, U., & Dodson, G. G. (1992). The crystal and molecular structure of the Rhizomucor miehei triacylglyceride lipase at 1.9 A resolution. Journal of Molecular Biology, 227, 818–839.

    Article  CAS  Google Scholar 

  23. Omay, D. (2014). Immobilization of lipase onto a photo-crosslinked polymer network: characterization and polymerization applications. Biocatalysis and Biotransformation, 32, 132–140.

    Article  CAS  Google Scholar 

  24. Dursun, B. Y., Cigil, A. B., Dongez, D., Kahraman, M. V., Ogan, A., & Demir, S. (2016). Preparation and characterization of sol–gel hybrid coating films for covalent immobilization of lipase enzyme. Journal of Molecular Catalysis B: Enzymatic, 127, 18–25.

    Article  Google Scholar 

  25. Hoyle, C. E., Lee, T. Y., & Roper, T. (2004). Thiol–enes: chemistry of the past with promise for the future. Journal of Polymer Science: Part A: Polymer Chemistry, 42, 5301–5338.

    Article  CAS  Google Scholar 

  26. Machado, T. O., Sayer, C., & Arauj, P. H. H. (2016). Thiol-ene polymerisation: a promising technique to obtain novel biomaterials. European Polymer Journal. doi:10.1016/j.eurpolymj.2016.02.025.

    Google Scholar 

  27. Cakmakci, E., Danis, O., Demir, S., Mulazim, Y., & Kahraman, M. V. (2013). Alpha-amylase immobilization on epoxy containing thiol-ene photocurable materials. Journal of Microbiology and Biotechnology, 23, 205–210.

    Article  CAS  Google Scholar 

  28. Akoh, C. C., Lee, G. G., & Shaw, J. F. (2004). Protein engineering and applications of Candida rugosa lipase isoforms. Lipids, 39, 513–526.

    Article  CAS  Google Scholar 

  29. Benjamin, S., & Pandey, A. (1998). Candida rugosa lipases: molecular biology and versatility in biotechnology. Yeast, 14, 1069–1087.

    Article  CAS  Google Scholar 

  30. Silva, C. J. S. M., Sousa, F., Gübitz, G., & Paulo, A. C. (2004). Chemical modifications on proteins using glutaraldehyde. Food Technology and Biotechnology, 42, 51–56.

    CAS  Google Scholar 

  31. Wine, Y., Cohen-Hadar, N., Freeman, A., & Frolow, F. (2007). Elucidation of the mechanism and end products of glutaraldehyde crosslinking reaction by X-ray structure analysis. Biotechnology and Bioengineering, 98, 711–718.

    Article  CAS  Google Scholar 

  32. Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2014). Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 4, 1583–1600.

    Article  CAS  Google Scholar 

  33. Migneault, I., Dartiguenave, C., Bertrand, M. J., & Waldron, K. (2004). Glutaraldehyde: behavior in aqueous solution, reaction with proteins, and application to enzyme crosslinking. BioTechniques, 37, 790–802.

    CAS  Google Scholar 

  34. Cakmakci, E., Cigil, A. B., Danıs, O., Demir, S., & Kahraman, M. V. (2014). Immobilization of alpha-amylase on aminated polyimide membrane: preparation, characterization, and properties. Starch/Stärke, 66, 274–280.

    Article  CAS  Google Scholar 

  35. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  36. Arıca, M. Y., & Bayramoǧlu, G. (2004). Reversible immobilization of tyrosinase onto polyethyleneimine-grafted and Cu(II) chelated poly(HEMA-co-GMA) reactive membranes. Journal of Molecular Catalysis B: Enzymatic, 27, 255–265.

    Article  Google Scholar 

  37. Kimmins, S. D., Wyman, P., & Cameron, N. R. (2014). Amine-functionalization of glycidyl methacrylate-containing emulsion-templated porous polymers and immobilization of proteinase K for biocatalysis. Polymer, 55, 416–425.

    Article  CAS  Google Scholar 

  38. Ozyilmaz, G. (2009). The effect of spacer arm on hydrolytic and synthetic activity of Candida rugosa lipase immobilized on silica gel. Journal of Molecular Catalysis B: Enzymatic, 56, 231–236.

    Article  CAS  Google Scholar 

  39. Suescun, A., Rueda, N., dos Santos, J. C. S., Castillo, J. J., Ortiz, C., Torres, R., Barbosa, O., & Fernandez-Lafuente, R. (2015). Immobilization of lipases on glyoxyl-octyl supports: improved stability and reactivation strategies. Process Biochemistry, 50, 1211–1217.

    Article  CAS  Google Scholar 

  40. Barbosa, O., Torres, R., Ortiz, C., & Fernandez-Lafuente, R. (2012). Versatility of glutaraldehyde to immobilize lipases: effect of the immobilization protocol on the properties of lipase B from Candida antarctica. Process Biochemistry, 47, 1220–1227.

    Article  CAS  Google Scholar 

  41. Bayramoglu, G., & Arica, M. Y. (2008). Adsorption of Cr(VI) onto PEI immobilized acrylate-based magnetic beads: isotherms, kinetics and thermodynamics study. Chemical Engineering Journal, 139, 20–28.

    Article  CAS  Google Scholar 

  42. Hernandez, K., & Fernandez-Lafuente, R. (2011). Control of protein immobilization: coupling immobilization and site-directed mutagenesis to improve biocatalyst or biosensor performance. Enzyme and Microbial Technology, 48, 107–122.

    Article  CAS  Google Scholar 

  43. Rodrigues, R. C., Berenguer-Murcia, Á., & Fernandez-Lafuente, R. (2011). Coupling chemical modification and immobilization to improve the catalytic performance of enzymes. Advanced Synthesis & Catalysis, 353, 2216–2238.

    Article  CAS  Google Scholar 

  44. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33, 435–456.

    Article  CAS  Google Scholar 

  45. Balcão, V. M., & Vila, M. M. (2014). Structural and functional stabilization of protein entities: state-of-the-art. Advanced Drug Delivery Reviews, 14, 213–220.

    Google Scholar 

  46. Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R., & Fernández-Lafuente, R. (2013). Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules, 14, 2433–2462.

    Article  CAS  Google Scholar 

  47. Manoel, E. A., dos Santos, J. C., Freire, D. M., Rueda, N., & Fernandez-Lafuente, R. (2015). Immobilization of lipases on hydrophobic supports involves the open form of the enzyme. Enzyme and Microbial Technology, 71, 53–57.

    Article  CAS  Google Scholar 

  48. Mendes, A. A., Freitas, L., de Carvalho, A. K. F., de Oliveira, P. C., & de Castro, H. F. (2011). Immobilization of a commercial lipase from Penicillium camembertii (lipase G) by different strategies. Enzyme Research, 2011, 1–8.

    Article  Google Scholar 

  49. Temoçin, Z. (2013). Covalent immobilization of Candida rugosa lipase on aldehyde functionalized hydrophobic support and the application for synthesis of oleic acid ester. Journal of Biomaterials Science, Polymer Edition, 24, 1618–1635.

    Article  Google Scholar 

  50. Manzano, M. F. G., & Igarzabal, C. I. A. (2011). Immobilization of lipase from Candida rugosa on synthesized hydrogel for hydrolysis reaction. Journal of Molecular Catalysis B: Enzymatic, 72, 28–35.

    Article  CAS  Google Scholar 

  51. Zhu, W., Zhang, Y., Hou, C., Pan, D., He, J., & Zhu, H. (2016). Covalent immobilization of lipases on monodisperse magnetic microspheres modified with PAMAM-dendrimer. Journal of Nanoparticle Research, 18, 1–13.

    Article  CAS  Google Scholar 

  52. Wang, F., Nie, T. T., Shao, L. L., & Cui, Z. (2014). Comparison of physical and covalent immobilization of lipase from Candida antarctica on polyamine microspheres of alkylamine matrix. Biocatalysis and Biotransformation, 32, 314–326.

    Article  Google Scholar 

  53. Pereira, M. G., et al. (2015). Stabilization of the lipase of Hypocrea pseudokoningii by multipoint covalent immobilization after chemical modification and application of the biocatalyst in oil hydrolysis. Journal of Molecular Catalysis B: Enzymatic, 121, 82–89.

    Article  CAS  Google Scholar 

  54. Wang, X.-Y., Jiang, X.-P., Li, Y., Zeng, S., & Zhang, Y.-W. (2015). Preparation Fe3O4@chitosan magnetic particles for covalent immobilization of lipase from Thermomyces lanuginosus. International Journal of Biological Macromolecules, 75, 44–50.

    Article  CAS  Google Scholar 

  55. Cao, L. (2006). Carrier-bound immobilized enzymes principles, application and design. Weinheim: Wiley-VCH.

    Google Scholar 

  56. Mislovicová, D., Masárová, J., Vikartovská, A., Gemeiner, P., & Michalková, E. (2004). Biospecific immobilization of mannan–penicillin G acylase neoglycoenzyme on Concanavalin A-bead cellulose. Journal of Biotechnology, 110, 11–19.

    Article  Google Scholar 

  57. Wang, W., Zhou, W., Li, J., Hao, D., Su, Z., & Ma, G. (2015). Comparison of covalent and physical immobilization of lipase in gigaporous polymeric microspheres. Bioprocess and Biosystems Engineering, 38, 2107–2115.

    Article  CAS  Google Scholar 

  58. Karra-Châabouni, M., Bouaziz, I., Boufi, S., do Rego, A. M. B., & Gargouri, Y. (2008). Physical immobilization of Rhizopus oryzae lipase onto cellulose substrate: activity and stability studies. Colloids and Surfaces B: Biointerfaces, 66, 168–177.

    Article  Google Scholar 

  59. Ye, P., Wang, X., Han, Z., Yang, J., & Wan, R. (2012). Lipase immobilization on functional group controlled surfaces. Advanced Materials Research, 441, 452–456.

    Article  CAS  Google Scholar 

  60. Handayani, N., Loos, K., Wahyuningrum, D., Buchari, & Zulfikar, M. A. (2012). Immobilization of Mucor miehei lipase onto macroporous aminated polyethersulfone membrane for enzymatic reactions. Membranes, 2, 198–213.

    Article  CAS  Google Scholar 

  61. Verma, M. L., Naebe, M., Barrow, C. J., & Puri, M. (2013). Enzyme immobilisation on amino-functionalised multi-walled carbon nanotubes: structural and biocatalytic characterisation. PloS One, 8, e73642.

    Article  CAS  Google Scholar 

  62. Yi, S.-S., Noh, J.-M., & Lee, Y.-S. (2009). Amino acid modified chitosan beads: improved polymer supports for immobilization of lipase from Candida rugosa. Journal of Molecular Catalysis B: Enzymatic, 57, 123–129.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emrah Çakmakçi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Çakmakçi, E., Muhsir, P. & Demir, S. Physical and Covalent Immobilization of Lipase onto Amine Groups Bearing Thiol-Ene Photocured Coatings. Appl Biochem Biotechnol 181, 1030–1047 (2017). https://doi.org/10.1007/s12010-016-2266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2266-6

Keywords

Navigation