Skip to main content
Log in

Promoting Tag Removal of a MBP-Fused Integral Membrane Protein by TEV Protease

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Tag removal is a prerequisite issue for structural and functional analysis of affinity-purified membrane proteins. The present study took a MBP-fused membrane protein, MrpF, as a model to investigate the tag removal by TEV protease. Influences of the linking sequence between TEV cleavage site and MrpF on protein expression and predicted secondary structure were investigated. The steric accessibility of TEV protease to cleavage site of MBP-fused MrpF was explored. It was found that reducing the size of hydrophilic group of detergents and/or extending the linking sequence between cleavage site and target protein can significantly improve the accessibility of the cleavage site and promote tag removal by TEV protease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Yildirim, M. A., Goh, K. I., Cusick, M. E., Barabasi, A. L., & Vidal, M. (2007). Drug-target network. Nature Biotechnology, 25, 1119–1126.

    Article  CAS  Google Scholar 

  2. Muller, C. E. (2012). Purine- and pyrimidine-binding membrane proteins as drug targets. Purinergic Signalling, 8, 125–126.

    Google Scholar 

  3. Krogh, A., Larsson, B., von Heijne, G., & Sonnhammer, E. L. (2001). Predicting transmembrane protein topology with a hidden Markov model: application to complete genomes. Journal of Molecular Biology, 305, 567–580.

    Article  CAS  Google Scholar 

  4. Kawashima, Y., Nishihara, H., Akasaki, T., Nikaido, M., Tsuchiya, K., Segawa, S., & Okada, N. (2013). The complete mitochondrial genomes of deep-sea squid (Bathyteuthis abyssicola), bob-tail squid (Semirossia patagonica) and four giant cuttlefish (Sepia apama, S. latimanus, S. lycidas and S. pharaonis), and their application to the phylogenetic analysis of Decapodiformes. Molecular Phylogenetics and Evolution, 69, 980–993.

    Article  CAS  Google Scholar 

  5. Doi, N., & Yanagawa, H. (1999). Insertional gene fusion technology. FEBS Letters, 457, 1–4.

    Article  CAS  Google Scholar 

  6. Waugh, D. S. (2005). Making the most of affinity tags. Trends in Biotechnology, 23, 316–320.

    Article  CAS  Google Scholar 

  7. Riggs, P. (2001) Expression and purification of maltose-binding protein fusions. Current protocols in molecular biology/edited by Frederick M. Ausubel... [et al.], Chapter 16, Unit 16 16.

  8. Arnau, J., Lauritzen, C., Petersen, G. E., & Pedersen, J. (2006). Current strategies for the use of affinity tags and tag removal for the purification of recombinant proteins. Protein Expression Purification, 48, 1–13.

    Article  CAS  Google Scholar 

  9. Waugh, D. S. (2011). An overview of enzymatic reagents for the removal of affinity tags. Protein Expression Purification, 80, 283–293.

    Article  CAS  Google Scholar 

  10. Kapust, R. B., Tozser, J., Fox, J. D., Anderson, D. E., Cherry, S., Copeland, T. D., & Waugh, D. S. (2001). Tobacco etch virus protease: mechanism of autolysis and rational design of stable mutants with wild-type catalytic proficiency. Protein Engineering, 14, 993–1000.

    Article  CAS  Google Scholar 

  11. Subathra, M., Santhakumar, P., Naidu, S. S., Narasu, M. L., Senthilkumar, T. M. A., & Lal, S. K. (2014). Expression of avian influenza virus (H5N1) hemagglutinin and matrix protein 1 in Pichia pastoris and evaluation of their immunogenicity in mice. Applied Biochemistry and Biotechnology, 172, 3635–3645.

    Article  CAS  Google Scholar 

  12. Li, Y. F. (2013). Recombinant production of crab antimicrobial protein scygonadin expressed as thioredoxin and SUMO fusions in Escherichia coli. Applied Biochemistry and Biotechnology, 169, 1847–1857.

    Article  CAS  Google Scholar 

  13. Nallamsetty, S., & Waugh, D. S. (2006). Solubility-enhancing proteins MBP and NusA play a passive role in the folding of their fusion partners. Protein Expression and Purification, 45, 175–182.

    Article  CAS  Google Scholar 

  14. Mohanty, A. K., Simmons, C. R., & Wiener, M. C. (2003). Inhibition of tobacco etch virus protease activity by detergents. Protein Expression and Purification, 27, 109–114.

    Article  CAS  Google Scholar 

  15. Lundback, A. K., van den Berg, S., Hebert, H., Berglund, H., & Eshaghi, S. (2008). Exploring the activity of tobacco etch virus protease in detergent solutions. Analytical Biochemistry, 382, 69–71.

    Article  Google Scholar 

  16. Hahne, H., Mader, U., Otto, A., Bonn, F., Steil, L., Bremer, E., Hecker, M., & Becher, D. (2010). A comprehensive proteomics and transcriptomics analysis of Bacillus subtilis salt stress adaptation. Journal of Bacteriology, 192, 870–882.

    Article  CAS  Google Scholar 

  17. Kajiyama, Y., Otagiri, M., Sekiguchi, J., Kosono, S., & Kudo, T. (2007). Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in bBacillus subtilis. Journal of Bacteriology, 189, 7511–7514.

    Article  CAS  Google Scholar 

  18. Xie, H., Patching, S. G., Gallagher, M. P., Litherland, G. J., Brough, A. R., Venter, H., Yao, S. Y. M., Ng, A. M. L., Young, J. D., Herbert, R. B., Henderson, P. J. F., & Baldwin, S. A. (2004). Purification and properties of the Escherichia coli nucleoside transporter NupG, a paradigm for a major facilitator transporter sub-family. Molecular Membrane Biology, 21, 323–336.

    Article  CAS  Google Scholar 

  19. Hewitt, S. N., Choi, R., Kelley, A., Crowther, G. J., Napuli, A. J., & Van Voorhis, W. C. (2011). Expression of proteins in Escherichia coli as fusions with maltose-binding protein to rescue non-expressed targets in a high-throughput protein-expression and purification pipeline. Acta Crystallographica, 67, 1006–1009.

    CAS  Google Scholar 

  20. Rahman, M., Ismat, F., McPherson, M. J., & Baldwin, S. A. (2007). Topology-informed strategies for the overexpression and purification of membrane proteins. Molecular Membrane Biology, 24, 407–U416.

    Article  CAS  Google Scholar 

  21. Vergis, J. M., & Wiener, M. C. (2011). The variable detergent sensitivity of proteases that are utilized for recombinant protein affinity tag removal. Protein Expression and Purification, 78, 139–142.

    Article  CAS  Google Scholar 

  22. Huang, Q. W., Li, Q. X., Chen, A. S., & Kang, C. B. (2013). West Nile virus protease activity in detergent solutions and application for affinity tag removal. Analytical Biochemistry, 435, 44–46.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by grants from the Ministry of Science and Technology (2016YFA0501200), the National Natural Science Foundation of China (31500603 and 21425523), and the Fundamental Research Funds for the Central Universities (WUT 2016IB006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jun Yang or Hao Xie.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Li, Q., Yang, J. et al. Promoting Tag Removal of a MBP-Fused Integral Membrane Protein by TEV Protease. Appl Biochem Biotechnol 181, 939–947 (2017). https://doi.org/10.1007/s12010-016-2260-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2260-z

Keywords

Navigation