Skip to main content
Log in

Enhancement of Exochitinase Production by Bacillus licheniformis AT6 Strain and Improvement of N-Acetylglucosamine Production

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

A strain producing chitinase, isolated from potato stem tissue, was identified as Bacillus licheniformis by biochemical properties and 16S RNA sequence analysis. Statistical experimental designs were used to optimize nine independent variables for chitinase production by B. licheniformis AT6 strain in submerged fermentation. Using Plackett–Burman design, (NH4)2SO4, MgSO4.7H2O, colloidal chitin, MnCl2 2H2O, and temperature were found to influence chitinase production significantly. According to Box–Behnken response surface methodology, the optimal fermentation conditions allowing maximum chitinase production were (in gram per liter): (NH4)2SO4, 7; K2HPO4, 1; NaCl, 1; MgSO4.7H2O, 0.1; yeast extract, 0.5; colloidal chitin, 7.5; MnCl2.2H2O, 0.2; temperature 35 °C; pH medium 7. The optimization strategy led to a 10-fold increase in chitinase activity (505.26 ± 22.223 mU/mL versus 50.35 ± 19.62 mU/mL for control basal medium). A major protein band with a molecular weight of 61.9 kDa corresponding to chitinase activity was clearly detected under optimized conditions. Chitinase activity produced in optimized medium mainly releases N-acetyl glucosamine (GlcNAc) monomer from colloidal chitin. This enzyme also acts as an exochitinase with β-N-acetylglucosaminidase. These results suggest that B. licheniformis AT6 secreting exochitinase is highly efficient in GlcNAc production which could in turn be envisaged as a therapeutic agent or as a conservator against the alteration of several ailments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Bansode, V. B., & Bajekal, S. S. (2006). Characterization of chitinases from microorganisms isolated from Lonar lake. Indian Journal of Biotechnology, 5, 357–363.

    CAS  Google Scholar 

  2. Gao, C., Zhang, A., Chen, K., Hao, Z., Tong, J., & Ouyang, P. (2015). Characterization of extracellular chitinase from Chitinibacter sp GC72 and its application in GlcNAc production from crayfish shell enzymatic degradation. Biochemical Engineering Journal, 97, 59–64.

    Article  CAS  Google Scholar 

  3. Bhushan, B., & Hoondal, G. S. (1999). Effect of fungicides insecticides and allosamidin on a thermostable chitinase from Bacillus sp BG-11. World Journal of Microbiology and Biotechnology, 15, 403–404.

    Article  Google Scholar 

  4. Gohel, V., Singh, A., Vimal, M., Ashwini, P., & Chhatpar, H. S. (2006). Bioprospecting and antifungal potential of chitinolytic microorganisms. African Journal of Biotechnology, 5, 54–72.

    Google Scholar 

  5. De Holanda, H. D., & Netto, F. M. (2006). Recovery of components from shrimp (Xiphopenaeus Kroyeri) processing waste by enzymatic hydrolysis. Journal of Food Science, 71, C298–C303.

    Article  Google Scholar 

  6. Gomaa, E. Z. (2012). Chitinase production by Bacillus thuringiensis and Bacillus licheniformis their potential in antifungal biocontrol. Journal of Microbiology, 50, 103–111.

    Article  CAS  Google Scholar 

  7. Henrissat, B., & Bairoch, A. (1993). New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochemical Journal, 293, 781–788.

    Article  CAS  Google Scholar 

  8. Kuk, J. H., Jung, W. J., Jo, G. H., Kim, Y. C., Kim, K. Y., & Park, R. D. (2005). Production of N-acetyl-beta-D-glucosamine from chitin by Aeromonas sp GJ-18 crude enzyme. Applied Microbiology and Biotechnology, 68, 384–389.

    Article  CAS  Google Scholar 

  9. Binod, P., Sukumaran, R. K., Shirke, S. V., Rajput, J. C., & Pandey, A. (2007). Evaluation of fungal culture filtrate containing chitinase as a biocontrol agent against Helicoverpa armigera. Journal of Applied Microbiology, 103, 1845–1852.

    Article  CAS  Google Scholar 

  10. Kuzu, S. B., Güvennez, H. K., & Denizci, A. A. (2012). Production of a thermostable and alkaline chitinase by Bacillus thuringiensis sbsp Kurstaki strain HBK-51. Biotechnology Research International, 2012, 1–6.

    Article  Google Scholar 

  11. Sashiwa, H., Fujishima, S., Yamano, N., Kawasaki, N., Nakayama, A., Muraki, E., Hiraga, K., Oda, K., & Aiba, S. (2002). Production of N-acetyl-D-glucosamine from chitin by crude enzymes from Aeromonas hydrophila H-2330. Carbohydrate Research, 337, 761–763.

    Article  CAS  Google Scholar 

  12. Xing, F., Qiaojuan, Y., Shaoqing, Y., Xinbin, Y., Yu, G., & Zhengqiang, J. (2014). An acidic, thermostable exochitinase with β-N-acetylglucosaminidase activity from Paenibacillus barengoltzii converting chitin to N-acetyl glucosamine. Biotechnology for Biofuels, 7, 174–184.

    Article  Google Scholar 

  13. Chen, J. K., Shen, C. R., & Liu, C. L. (2010). N-acetylglucosamine: production and applications. Marine Drugs, 8, 2493–2516.

    Article  CAS  Google Scholar 

  14. Yang, S., Fu, X., Yan, Q., Jiang, Z., & Wang, J. (2016). Biochemical characterization of a novel acidic exochitinase from Rhizomucor miehei with antifungal activity. Journal of Agricultural and Food Chemistry, 64, 461–469.

    Article  CAS  Google Scholar 

  15. Tasharrofi, N., Adrangi, S., Fazeli, M., Rastegar, H., Khoshayand, M. R., & Faramarzi, M. A. (2011). Optimization of chitinase production by Bacillus pumilus using Plackett–Burman design and response surface methodology. Iranian Journal of Pharmaceutical Research, 10, 759–768.

    CAS  Google Scholar 

  16. Ghorbel, B. O., Manni, L., Jellouli, K., Hmidet, N., & Nasri, M. (2011). Optimization of protease and chitinase production by Bacillus cereus SV1 on shrimp shell waste using statistical experimental design biochemical and molecular characterization of the chitinase. Annals of Microbiology, 62, 1255–1268.

    Article  Google Scholar 

  17. Kalil, S., Maugeri, F., & Rodrigues, M. (2000). Response surface analysis and simulation as a tool for bioprocess design and optimization. Process Biochemistry, 35, 539–550.

    Article  CAS  Google Scholar 

  18. Hao, Z., Cai, Y., Liao, X., Zhang, X., Fang, Z., & Zhang, D. (2012). Optimization of nutrition factors on chitinase production from a newly isolated Chitiolyticbacter meiyuanensis SYBC-H1. Brazilian Journal of Microbiology, 43, 177–186.

    Article  CAS  Google Scholar 

  19. Francis, F., Sabu, A., Nampoothiri, K. M., Ramachandran, S., Ghosh, S., Szakacs, G., & Pandey, A. (2003). Use of response surface methodology for optimizing process parameters for the production of α-amylase by Aspergillus oryzae. Biochemical Engineering Journal, 15, 107–115.

    Article  CAS  Google Scholar 

  20. Yang, F., Long, L., Sun, X., Wu, H., Li, T., & Xiang, W. (2014). Optimization of medium using response surface methodology for lipid production by Scenedesmus sp. Marine Drugs, 12, 1245–1257.

    Article  Google Scholar 

  21. Wasko, A., Kordowska, W. M., Podlesny, M., Polak, B. M., Targonski, Z., & Kubik, K. A. (2010). The placket Burman design in optimization of media components for biomass production of Lactobacillus rhamnosus OXY. Acta Biologica Hungarica, 61, 344–355.

    Article  CAS  Google Scholar 

  22. Polak, B. M., Wasko, A., & Kubik, K. A. (2014). Optimization of culture conditions for exopolysaccharide production by a probiotic strain of Lactobacillus rhamnosus E/N. Polish Journal of Microbiology, 63, 253–257.

    Google Scholar 

  23. Bae, S., & Shoda, M. (2005). Statistical optimization of culture conditions for bacterial cellulose production using Box–Behnken design. Biotechnology and Bioengineering, 90, 20–28.

    Article  CAS  Google Scholar 

  24. Joshi, S., Yadav, S., Nerurkar, A., & Desai, A. J. (2007). Statistical optimization of medium components for the production of biosurfactant by Bacillus licheniformis K51. Journal of Microbiology and Biotechnology, 17, 313–319.

    CAS  Google Scholar 

  25. Hsu, S. C., & Lockwood, J. L. (1975). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. Applied Microbiology, 29, 422–426.

    CAS  Google Scholar 

  26. Kefi, A., Ben Slimene, I., Karkouch, I., Rihouey, C., Azaiez, S., Bejaoui, M., Belaid, R., Cosette, P., Jouenne, T., & Limam, F. (2015). Characterization of endophytic Bacillus strains from tomato plants (Lycopersicon esculentum) displaying antifungal activity against Botrytis cinerea Pers. World Journal of Microbiology and Biotechnology, 31, 1967–1976.

    Article  CAS  Google Scholar 

  27. Ben Slimene, I., Tabbene, O., Gharbi, D., Mnasri, B., Schmitter, J. M., Urdaci, M. C., & Limam, F. (2015). Isolation of a chitinolytic Bacillus licheniformis S213 strain exerting a biological control against Phoma medicaginis infection. Applied Biochemistry and Biotechnology, 175, 3494–3506.

    Article  CAS  Google Scholar 

  28. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugars. Analytical Chemistry, 31, 426–428.

    Article  CAS  Google Scholar 

  29. Laemmli, U. K. (1970). Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  30. Elgharbi, F., Hmida, S. A., Sahnoun, M., Kammoun, R., Jlaeil, L., Hassairi, H., & Bejar, S. (2013). Purification and biochemical characterization of a novel thermostable lichenase from Aspergillus niger US368. Carbohydrate Polymers, 98, 967–975.

    Article  CAS  Google Scholar 

  31. Yang, S., Yan, Q., Jiang, Z., Fan, G., & Wang, L. (2008). Biochemical characterization of a novel thermostable beta-1,3-1,4-glucanase (lichenase) from Paecilomyces thermophile. Journal of Agricultural and Food Chemistry, 56, 5345–5351.

    Article  CAS  Google Scholar 

  32. Pati, S., Liberatore, M. T., Lamacchia, C., & La Notte, E. (2009). Influence of ageing on lees on polysaccharide glycosyl-residue composition of chardonnay wine. Carbohydrate Polymers, 80, 332–336.

    Article  Google Scholar 

  33. Rishad, K. S., Sharrel Rebello, S., Nathan, V. K., Shabanamol, S., & Jisha, M. S. (2016). Optimised production of chitinase from a novel mangrove isolate, Bacillus pumilus MCB-7 using response surface methodology. Biocatalysis and Agricultural Biotechnology, 5, 143–149.

    Article  Google Scholar 

  34. Narasimhan, A., & Shivakumar, S. (2012). Optimization of chitinase produced by a biocontrol strain of Bacillus subtilis using Plackett–Burman design. European Journal of Experimental Biology, 2, 861–865.

    CAS  Google Scholar 

  35. Singh, A. K., Mehta, G., & Chhatpar, H. S. (2009). Optimization of medium constituents for improved chitinase production by Paenibacillus sp. D1 using statistical approach. Journal of Applied Microbiology, 49, 708–714.

    Article  CAS  Google Scholar 

  36. Wang, K., Yan, P. S., & Cao, L. X. (2014). Chitinase from a novel strain of Serratia marcescens JPP1 for biocontrol of aflatoxin: molecular characterization and production optimization using response surface methodology. BioMed Research International, 2014, 1–8.

    Google Scholar 

  37. Gohel, V., Chaudhary, T., Vyas, P., & Chhatpar, H. S. (2006). Statistical screenings of medium components for the production of chitinase by the marine isolate Pantoea dispersa. Biochemical Engineering Journal, 28, 50–56.

    Article  CAS  Google Scholar 

  38. Nampoothiri, K. M., Baiju, T. V., Sandhya, C., Sabu, A., Szakacs, G., & Pandey, A. (2004). Process optimization for antifungal chitinase production by Trichoderma harzianum. Process Biochemistry, 39, 1583–1590.

    Article  CAS  Google Scholar 

  39. Akhir, S. M., Abd-Aziz, S., Salleh, M. M., Rahman, R. A., Illias, R. M., & Hassan, M. A. (2009). Medium optimization of chitinase enzyme production from shrimp waste using Bacillus licheniformis TH-1 by response surface methods. Biotechnology, 8, 120–125.

    Article  CAS  Google Scholar 

  40. Toharisman, A., Suhartono, M. T., Spindler, B. M., Hwang, J. K., & Pyun, Y. R. (2005). Purification and characterization of a thermostable chitinase from Bacillus licheniformis Mb-2. World Journal of Microbiology and Biotechnology, 21, 733–738.

    Article  CAS  Google Scholar 

  41. Nawani, N. N., & Kapadnis, B. P. (2005). Optimization of chitinase production using statistics based experimental designs. Process Biochemistry, 40, 651–660.

    Article  CAS  Google Scholar 

  42. Kuddus, S. M., & Ahmad, R. I. Z. (2013). Isolation of novel chitinolytic bacteria and production optimization of extracellular chitinase. Journal of Genetic Engineering and Biotechnology, 11, 39–46.

    Article  Google Scholar 

  43. Ghanem, K. M., Al-Garni, S. M., & Al-Makishah, N. H. (2010). Statistical optimization of cultural conditions for chitinase production from fish scales waste by Aspergillus terreus. African Journal of Biotechnology, 9, 5135–5146.

    CAS  Google Scholar 

  44. Narayana, K. J. P., & Vijayalakshmi, M. (2009). Chitinase production by Streptomyces sp ANU 6277. Brazilian Journal of Microbiology, 40, 725–733.

    Article  CAS  Google Scholar 

  45. Das, M. P., Rebecca, L. J., Sharmila, S. A., Banerjee, A., & Kumar, D. (2012). Identification and optimization of cultural conditions for chitinase production by Bacillus amyloliquefaciens SM3. Journal of Chemical and Pharmaceutical Research, 4, 4816–4821.

    CAS  Google Scholar 

  46. Jholapara, R. J., Mehta, R. S., Bhagwat, A. M., & Sawant, C. S. (2013). Exploring and optimizing the potential of chitinase production by isolated Bacillus Spp. International Journal of Pharmacy and Pharmaceutical Sciences, 5, 412–418.

    CAS  Google Scholar 

  47. Han, Y., Li, Z., Miao, X., & Zhang, F. (2008). Statistical optimization of medium components to improve the chitinase activity of Streptomyces sp DA11 associated with the South China Sea sponge Craniella australiensis. Process Biochemistry, 43, 1088–1093.

    Article  CAS  Google Scholar 

  48. Khan, M. A., Hamid, R., Ahmad, M., Abdin, M. Z., & Javed, S. (2010). Optimization of culture media for enhanced chitinase production from a novel strain of Stenotrophomonas maltophilia using response surface methodology. Journal of Microbiology and Biotechnology, 20, 1597–1602.

    Article  CAS  Google Scholar 

  49. Sandhya, C., Adapa, L. K., Nampoothiri, K. N., Binod, P., Szakacs, G., & Pandey, A. (2004). Extracellular chitinase production by Trichoderma harzianum in submerged fermentation. Journal of Basic Microbiology, 44, 49–58.

    Article  CAS  Google Scholar 

  50. Sakai, K., Yokota, A., Kurokawa, H., Wakayama, M., & Moriguchi, M. (1998). Purification and characterization of three thermostable endochitinases of a noble Bacillus strain MH-1, isolated from chitin-containing compost. Applied and Environmental Microbiology, 64, 3397–3402.

    CAS  Google Scholar 

  51. Yuli, P. E., Suhartono, M. T., Rukayadi, Y., Hwang, J. K., & Pyun, Y. R. (2004). Characteristic of thermostable chitinase enzyme from the Indonesian Bacillus sp 13.26. Enzyme and Microbial Technology, 35, 147–153.

    Article  CAS  Google Scholar 

  52. Cheba, B. A., Zaghloul, T. I., El-Mahdy, A. R., & El-Massry, H. (2016). Effect of pH and temperature on Bacillus sp. R2 chitinase activity and stability. Procedia Technology, 22, 471–477.

    Article  Google Scholar 

  53. Songsiriritthigul, C., Lapboonrueng, S., Pechsrichuang, P., Pesatcha, P., & Yamabhai, M. (2010). Expression and characterization of Bacillus licheniformis chitinase (ChiA), suitable for bioconversion of chitin waste. Bioressource Technology, 101, 4096–4103.

    Article  CAS  Google Scholar 

  54. Waghmare, S. R., & Ghosh, J. S. (2010). Chitobiose production by using a novel thermostable chitinase from Bacillus licheniformis strain JS isolated from a mushroom bed. Carbohydrate Research, 345, 2630–2635.

    Article  CAS  Google Scholar 

  55. Nguyen, H. A., Nguyen, T. H., Nguyen, T. T., Peterbauer, C. K., Mathiesen, G., & Haltrich, D. (2012). Chitinase from Bacillus licheniformis DSM13: expression in Lactobacillus plantarum WCFS1 and biochemical characterisation. Protein Expression and Purification, 81, 166–174.

    Article  CAS  Google Scholar 

  56. Casados-Vázquez, L. E., Avila-Cabrera, S., Bideshi, D. K., & Barboza-Corona, J. E. (2015). Heterologous expression, purification and biochemical characterization of endochitinase ChiA74 from Bacillus thuringiensis. Protein Expression and Purification, 109, 99–105.

    Article  Google Scholar 

  57. Laribi-Habchi, H., Bouanane-Darenfed, A., Drouiche, N., Pauss, A., & Mameri, N. (2015). Purification, characterization, and molecular cloning of an extracellular chitinase from Bacillus licheniformis stain LHH100 isolated from waste water samples in Algeria. International Journal of Biological Macromolecules, 72, 1117–1128.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the “Ministère de l’Enseignement Supérieur et de la Recherche Scientifique” of Tunisia. We would like to thank Prof. Ezzedine Aouani for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olfa Tabbene.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aounallah, M.A., Slimene-Debez, I.B., Djebali, K. et al. Enhancement of Exochitinase Production by Bacillus licheniformis AT6 Strain and Improvement of N-Acetylglucosamine Production. Appl Biochem Biotechnol 181, 650–666 (2017). https://doi.org/10.1007/s12010-016-2239-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2239-9

Keywords

Navigation