Skip to main content
Log in

Comparative Temporal Expression Analysis of MicroRNAs and Their Target Genes in Contrasting Wheat Genotypes During Osmotic Stress

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

MicroRNAs (miRNAs) are important nonprotein-coding genes involved in almost all biological processes during biotic and abiotic stresses in plants. To investigate the miRNA-mediated plant response to drought stress, two drought-tolerant (C-306 and NI-5439) and two drought-sensitive (HUW-468 and WL-711) wheat genotypes were exposed to 25 % PEG 6000 for 1, 12 and 24 h. Temporal expression patterns of 12 drought-responsive miRNAs and their corresponding nine targets were monitored by quantitative real-time PCR (qRT-PCR). The results showed differential expression of miRNAs and their targets with varying degree of upregulation and downregulation in drought-sensitive genotypes. Likewise, in drought-tolerant wheat genotypes, maximum accumulation of miR393a and miR397a was observed at 1 h of stress. In addition, nearly perfect negative correlation was observed in four miRNA and target pairs (miR164-NAC, miR168a-AGO, miR398-SOD and miR159a-MYB) across all the temporal period studied which could be a major player during drought response in wheat. We, for the first time, validated the presence of miR529a and miR1029 in wheat. These findings gives a clue for temporal and variety-specific differential regulation of miRNAs and their targets in wheat in response to osmotic shock and could help in defining the potential roles of miRNAs in plant adaptation to osmotic stress in future.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chaves, M. M., Maroco, J. P., & Pereira, J. S. (2003). Understanding plant responses to drought from genes to the whole plant. Functional Plant Biology, 30, 239–264

  2. Denby, K., & Gehring, C. (2005). Engineering drought and salinity tolerance in plants: lessons from genomewide expression profiling in Arabidopsis. Trends in Biotechnology, 23, 547–552.

  3. Bartel, D. P. (2004). MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 116, 281–297.

    Article  CAS  Google Scholar 

  4. Navarro, L., Dunoyer, P., Jay, F., Arnold, B., Dharmasiri, N., Estelle, M., Voinnet, O., & Jones, J. D. (2006). A plant miRNA contributes to antibacterial resistance by repressing auxin signalling. Science, 312, 436–439.

    Article  CAS  Google Scholar 

  5. Khraiwesh, B., Zhu, J. K., & Zhuc, J. (2012). Role of miRNAs and siRNAs in biotic and abiotic stress responses of plants. Biochemistry and Biophysics Acta, 1819(2), 137–148.

    CAS  Google Scholar 

  6. Gupta, O. P., Meena, N. L., Sharma, I., & Sharma, P. (2014). Differential regulation of microRNAs in response to osmotic, salt and cold stresses in wheat. Molecular Biology Reports, 41(7), 4623–4629.

    Article  CAS  Google Scholar 

  7. Pandey, B., Gupta, O. P., Pandey, D. M., Sharma, I., & Sharma, P. (2013). Identification of new stress-induced microRNA and their targets in wheat using computational approach. Plant Signal Behaviour, 8(5), e23932.

    Article  Google Scholar 

  8. Liu, H., Tian, X., Li, Y., Wu, C. A., & Zheng, C. (2008). Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA, 14, 836–843.

    Article  CAS  Google Scholar 

  9. Zhao, B., Liang, R., Ge, L., Li, W., Xiao, H., Lin, H., Ruan, K., & Jin, Y. (2007). Identification of drought-induced microRNAs in rice. Biochemistry and Biophysics Research Communication, 354, 585–590.

    Article  CAS  Google Scholar 

  10. Zhou, L., Liu, Y., Liu, Z., Kong, D., Duan, M., & Luo, L. (2010). Genome-wide identification and analysis of drought-responsive microRNAs in Oryza sativa. Journal of Experimental Botany, 61(15), 4157–4168.

    Article  CAS  Google Scholar 

  11. Arenas-Huertero, C., Perez, B., Rabanal, F., Blanco-Melo, D., De la Rosa, C., Estrada-Navarrete, G., Sanchez, F., Covarrubias, A. A., & Reyes, J. L. (2009). Conserved and novel miRNAs in the legume Phaseolus vulgaris in response to stress. Plant Molecular Biology, 70, 385–401.

    Article  CAS  Google Scholar 

  12. Kulcheski, F. R., de Oliveira, L. F. V., Molina, L. G., Almerao, M. P., Rodrigues, F. A., Marcolino, J., Barbosa, J. F., Stolf-Moreira, R., Nepomuceno, A. L., Marcelino-Guimaraes, F. C., Abdelnoor, R. V., Nascimento, L. C., Carazzolle, M. F., Pereira, G. A. G., & Margis, R. (2011). Identification of novel soybean microRNAs involved in abiotic and biotic stresses. BMC Genomics, 12, 307.

    Article  CAS  Google Scholar 

  13. Wang, T., Chen, L., Zhao, M., Tian, Q., & Zhang, W. H. (2011). Identification of drought responsive microRNAs in Medicago truncatula by genome-wide high throughput sequencing. BMC Genomics, 12, 367.

    Article  CAS  Google Scholar 

  14. Ferreira, T. H., Gentile, A., Vilela, R. D., Costa, G. G., Dias, L. I., Endres, L., & Menossi, M. (2012). MicroRNAs associated with drought response in the bioenergy crop sugarcane (Saccharum spp.). PloS One, 7(10), e46703.

    Article  CAS  Google Scholar 

  15. Kantar, M., Lucas, S. J., & Budak, H. (2011). miRNA expression patterns of Triticum dicoccoides in response to shock drought stress. Planta, 233, 471–484.

    Article  CAS  Google Scholar 

  16. Wang, M., Wang, Q., & Zhang, B. (2013). Response of miRNAs and their targets to salt and drought stresses in cotton (Gossypium hirsutum L.). Gene, 530, 26–32.

    Article  CAS  Google Scholar 

  17. Shuai, P., Liang, D., Zhang, Z., Yin, W., & Xia, X. (2013). Identification of drought responsive and novel Populus trichocarpa microRNAs by high throughput sequencing and their targets using degradome analysis. BMC Genomics, 14, 233.

    Article  CAS  Google Scholar 

  18. Zhang, N., Yang, J., Wang, Z., Wen, Y., Wang, J., He, W., Liu, B., Si, H., & Wang, D. (2014). Identification of novel and conserved microRNAs related to drought stress in potato by deep sequencing. PloS One, 9(4), e95489.

    Article  Google Scholar 

  19. Reyes, J. L., & Chua, N. H. (2007). ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant Journal, 49, 592–606.

    Article  CAS  Google Scholar 

  20. Allen, R. S., Li, J. Y., Alonso-Peral, M. M., White, R. G., Gubler, F., & Millar, A. A. (2010). MicroR159 regulation of most conserved targets in Arabidopsis has negligible phenotypic effects. Science, 1, 1821.

    Google Scholar 

  21. Chen, Z. H., Bao, M. L., Sun, Y. Z., Yang, Y. J., Xu, X. H., Wang, J. H., Han, N., Bian, H. W., & Zhu, M. Y. (2011). Regulation of auxin response by miR393-targeted transport inhibitor response protein 1 is involved in normal development in Arabidopsis. Plant Molecular Biology, 77, 619–629.

    Article  CAS  Google Scholar 

  22. Aukerman, M. J., & Sakai, H. (2003). Regulation of flowering time and floral organ identity by a microRNA and its Apetala2-like target genes. Plant Cell, 15, 2730–2741.

    Article  CAS  Google Scholar 

  23. Zhu, Q. H., Upadhyaya, N. M., Gubler, F., & Helliwell, C. A. (2009). Over-expression of miR172 causes loss of spikelet determinacy and floral organ abnormalities in rice (Oryza sativa). BMC Plant Biology, 9, 149.

    Article  Google Scholar 

  24. Zhu, Q., & Helliwell, C. A. (2010). Regulation of flowering time and floral patterning by miR172. Journal of Experimental Botany, 62(2), 487–495.

    Article  Google Scholar 

  25. Sunkar, R., Kapoor, A., & Zhu, J. K. (2006). Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by down regulation of miR398 and important for oxidative stress tolerance. Plant Cell, 18, 2051–2065.

    Article  CAS  Google Scholar 

  26. Guo, H. S., Xie, Q., Fei, J. F., & Chua, N. H. (2005). MicroRNA directs mRNA cleavage of the transcription factor NAC1 to down regulate auxin signals for Arabidopsis lateral root development. Plant Cell, 17(5), 1376–1386.

    Article  CAS  Google Scholar 

  27. Axtell, M. J., Snyder, J. A., & Bartel, D. P. (2007). Common functions for diverse small RNAs of land plants. The Plant Cell, 19, 1750–1769.

    Article  CAS  Google Scholar 

  28. Yao, Y., Guo, G., Ni, Z., Sunkar, R., Du, J., Zhu, J. K., & Sun, Q. (2007). Cloning and characterization of microRNAs from wheat (Triticum aestivum L.). Genome Biology, 8, R96.

    Article  Google Scholar 

  29. Kadam, S., Singh, K., Shukla, S., Goel, S., Vikram, P., Pawar, V., Gaikwad, K., Khanna-Chopra, R., & Singh, N. (2012). Genomic associations for drought tolerance on the short arm of wheat chromosome 4B. Functional & Integrative Genomics, 12(3), 447–464.

    Article  CAS  Google Scholar 

  30. Tomar, R. S., Vinod, Tomar, S. M. S., Sai Prasad, S. V., Naik, K. B., Jha, G. K., Singh, N. K., & Chand, S. (2012). Development of mapping populations and their characterization for drought tolerance in wheat. Indian Journal of Genetics and Plant Breeding, 72, 195–207.

    CAS  Google Scholar 

  31. Seungil, R. O., Park, C., Jin, J., Sanders, K. M., & Yan, W. (2006). A PCR-based method for detection and quantification of small RNAs. Biochemical and Biophysical Research Communication, 351(3), 756–763.

  32. Yan, J. W., Yuan, F. R., Long, G. Y., Qin, L., & Deng, Z. N. (2012). Selection of reference genes for quantitative real-time RT-PCR analysis in citrus. Molecular Biology Reports, 39, 1831–1838.

    Article  CAS  Google Scholar 

  33. Livak, K. J., & Schmittgen, T. D. (2001). Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)). Methods, 25, 402–408.

    Article  CAS  Google Scholar 

  34. Nageshbabu, R., Jyothi, M. N., Sharadamma, N., Sarika, S., Rai, D. V., & Devraj, V. R. (2013). Expression of miRNA regulates growth and development of frenchbean (Phaseolus vulgaris) under salt and drought stress conditions. International Research Journal of Biological Science, 2(1), 52–56.

    Google Scholar 

  35. Jing-Sheng, L. I., Feng-Ling, F. U., Ming, A. N., Shu-Feng, Z., Yue-Hui, S., & Wan-Chen, L. I. (2013). Differential expression of microRNAs in response to drought stress in maize. Journal of Integrated Agriculture, 12(8), 1414–1422.

    Article  Google Scholar 

  36. Li, Y., Li, C., Ding, G., & Jin, Y. (2011). Evolution of MIR159/319 microRNA genes and their post-transcriptional regulatory link to siRNA pathways. BMC Evolutionary Biology, 11, 122.

    Article  CAS  Google Scholar 

  37. Barrera-Figueroa, B. E., Gao, L., Diop, N. N., Wu, Z., Ehlers, J. D., Roberts, P. A., Close, T. J., Zhu, J. K., & Liu, R. (2011). Identification and comparative analysis of drought associated microRNAs in two cowpea genotypes. BMC Plant Biology, 11, 127.

    Article  CAS  Google Scholar 

  38. Sunkar, R., & Zhu, J. K. (2004). Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. The Plant Cell, 16, 2001–2019.

  39. Trindade, A., Capitao, C., Dalmay, T., Fevereiro, M. P., & Santos, D. M. (2010). MiR398 and miR408 are up regulated in response to water deficit in Medicago truncatula. Planta, 231, 705–716.

    Article  CAS  Google Scholar 

  40. Mutum, R. D., Balyan, S. C., Kansal, S., Agarwal, P., Kumar, S., Kumar, M., & Raghuvanshi, S. (2013). Evolution of variety-specific regulatory schema for expression of Osa-miR408 in indica rice varieties under drought stress. FEBS Journal, 280, 1717–1730.

    Article  CAS  Google Scholar 

  41. Feng, X. M., Qiao, Y., Mao, K., Hao, Y. J., & You, C. X. (2010). Overexpression of Arabidopsis atmiR408 gene in tobacco. Acta Biologia Cracoviensia Series Botanica, 52(2), 26–31.

    Google Scholar 

  42. Kumar, R. (2014). Role of microRNAs in biotic and abiotic stress responses in crop plants. Applied Biochemistry and Biotechnology, 174, 93–115.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Indian Council of Agricultural Research grant DWR/RP/10-5.3 to PS. The authors are grateful to the Director, ICAR-Indian Institute of Wheat and Barley Research, Karnal and PI (Crop Improvement) for providing the necessary facilities during the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pradeep Sharma.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaur, A., Gupta, O.P., Meena, N.L. et al. Comparative Temporal Expression Analysis of MicroRNAs and Their Target Genes in Contrasting Wheat Genotypes During Osmotic Stress. Appl Biochem Biotechnol 181, 613–626 (2017). https://doi.org/10.1007/s12010-016-2236-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2236-z

Keywords

Navigation