Skip to main content
Log in

CO2 Biofixation of Actinobacillus succinogenes Through Novel Amine-Functionalized Polystyrene Microsphere Materials

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

CO2-derived succinate production was enhanced by Actinobacillus succinogenes through polystyrene (PSt) microsphere materials for CO2 adsorption in bioreactor, and the adhesion forces between A. succinogenes bacteria and PSt materials were characterized. Synthesized uniformly sized and highly cross-linked PSt microspheres had high specific surface areas. After modification with amine functional groups, the novel amine-functionalized PSt microspheres exhibited a high adsorption capacity of 25.3 mg CO2/g materials. After addition with the functionalized microspheres into the culture broth, CO2 supply to the cells increased. Succinate production by A. succinogenes can be enhanced from 29.6 to 48.1 g L−1. Moreover, the characterization of interaction forces between A. succinogenes cells and the microspheres indicated that the maximal adhesive force was about 250 pN. The amine-functionalized PSt microspheres can adsorb a large amount of CO2 and be employed for A. succinogenes anaerobic cultivation in bioreactor for high-efficiency production of CO2-derived succinate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Adamczyk, M., Lasek, J., & Skawińska, A. (2016). CO2 biofixation and growth kinetics of Chlorella vulgaris and Nannochloropsis gaditana. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-016-2062-3.

    Google Scholar 

  2. Wang, C., Zhang, H. L., Cai, H., Zhou, Z. H., Chen, Y. L., Chen, Y. L., & Ouyang, P. K. (2014). Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum. Applied Biochemistry and Biotechnology, 172, 340–350.

    Article  CAS  Google Scholar 

  3. Chen, Y., & Nielsen, J. (2016). Biobased organic acids production by metabolically engineered microorganisms. Current Opinion in Biotechnology, 37, 165–172.

    Article  Google Scholar 

  4. Salvachúa, D., Mohagheghi, A., Smith, H., Bradfield, M. F., Nicol, W., Black, B. A., Biddy, M. J., Dowe, N., & Beckham, G. T. (2016). Succinic acid production on xylose-enriched biorefinery streams by Actinobacillus succinogenes in batch fermentation. Biotechnology for Biofuels, 9, 28.

    Article  Google Scholar 

  5. Song, H., Lee, J. W., Choi, S., You, J. K., Hong, W. H., & Lee, S. Y. (2007). Effects of dissolved CO2 levels on the growth of Mannheimia succiniciproducens and succinic acid production. Biotechnology and Bioengineering, 98, 1296–1304.

    Article  CAS  Google Scholar 

  6. Chen, X., Sun, J., Wang, J. Q., & Cheng, W. G. (2012). Polystyrene-bound diethanolamine based ionic liquids for chemical fixation of CO2. Tetrahedron Letters, 53, 2684–2688.

    Article  CAS  Google Scholar 

  7. Martín, C. F., Stöckel, E., Clowes, R., Adams, D. J., Cooper, A. I., Pis, J. J., Rubiera, F., & Pevida, C. J. (2011). Hypercrosslinked organic polymer networks as potential adsorbents for pre-combustion CO2 capture. Journal of Materials Chemistry, 21, 5475–5483.

    Article  Google Scholar 

  8. Kaliva, M., Armatas, G. S., & Vamvakaki, M. (2012). Microporous polystyrene particles for selective carbon dioxide capture. Langmuir, 28, 2690–2695.

    Article  CAS  Google Scholar 

  9. Zhang, C. X., Zhang, R. Y., Li, Q., Huang, Y. D., Zhao, L., Su, Z. G., Gong, F. L., Lv, Z., Song, H. Y., Li, W., Yuan, Q. P., & Ma, G. H. (2015). Rapid octreotide separation from synthetic peptide crude mixtures by chromatography on poly(styrene–co-divinylbenzene)-based reversed phases. Separation and Purification Technology, 154, 351–358.

    Article  CAS  Google Scholar 

  10. An, D., Wu, L. B., Li, B. G., & Zhu, S. P. (2007). Synthesis and SO2 absorption/desorption properties of poly(1,1,3,3-tetramethylguanidine acrylate). Macromol., 69, 3388–3393.

    Article  Google Scholar 

  11. Li, Q., Wang, D., Hu, G., Xing, J. M., & Su, Z. G. (2011). Integrated bioprocess for high-efficiency production of succinic acid in an expanded-bed adsorption system. Biochemical Engineering Journal, 56, 150–157.

    Article  CAS  Google Scholar 

  12. Hofstadt, M. V. D., Hüttener, M., Juárez, A., & Gomila, G. (2015). Nanoscale imaging of the growth and division of bacterial cells on planar substrates with the atomic force microscope. Ultramicroscopy, 154, 29–36.

    Article  Google Scholar 

  13. Hauser, I., Colaco, A. B., Skjæran, J. A., Einbu, A., Østgaard, K., Svendsen, H. F., & Cervantes, F. J. (2013). Biological N removal from wastes generated from amine-based CO2 capture: case monoethanolamine. Applied Biochemistry and Biotechnology, 169, 1449–1458.

    Article  CAS  Google Scholar 

  14. Li, Q., Zhang, R. Y., Wu, D. X., Huang, Y. D., Zhao, L., Wang, D., Gong, F. L., Li, L., Qiu, H., & Ma, G. H. (2016). Cell-nanoparticle assembly fabricated for CO2 capture and in situ carbon conversion. J. CO2 Util., 13, 17–23.

    Article  CAS  Google Scholar 

  15. Li, Q., Xing, J. M., Li, W. L., Liu, Q. F., & Su, Z. G. (2009). Separation of succinic acid from fermentation broth using weak alkaline anion exchange adsorbents. Industrial and Engineering Chemistry Research, 48, 3595–3599.

    Article  CAS  Google Scholar 

  16. Choi, W., Kim, G., & Lee, K. (2012). Influence of the CO2 absorbent monoethanolamine on growth and carbon fixation by the green alga Scenedesmus sp. Bioresource Technology, 120, 295–299.

    Article  CAS  Google Scholar 

  17. da Rosa, G. M., Moraes, L., Cardias, B. B., Souza, M. R. A. Z., & Costa, J. A. V. (2015). Chemical absorption and CO2 biofixation via the cultivation of Spirulina in semicontinuous mode with nutrient recycle. Bioresource Technology, 192, 321–327.

    Article  CAS  Google Scholar 

  18. Sumida, K., Rogow, D. L., Mason, J. A., McDonald, T. M., Bloch, D. E., Herm, Z. R., Bae, T., & Long, J. R. (2012). Carbon dioxide capture in metal-organic frameworks. Chemical Reviews, 112, 724–781.

    Article  CAS  Google Scholar 

  19. Shimoi, N., & Abe, D. (2015). Method for measuring the distribution of adhesion forces on continuous nanoscale protrusions using carbon nanofiber tip on a scanning probe microscope cantilever. ACS Applied Materials & Interfaces, 7, 13776–13781.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The National Natural Science Foundation of China (Grant No. 21206175) supported this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qiang Li or Ning Dai.

Electronic supplementary material

ESM 1

(DOCX 435 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, W., Li, Q. & Dai, N. CO2 Biofixation of Actinobacillus succinogenes Through Novel Amine-Functionalized Polystyrene Microsphere Materials. Appl Biochem Biotechnol 181, 584–592 (2017). https://doi.org/10.1007/s12010-016-2233-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2233-2

Keywords

Navigation