Skip to main content
Log in

Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In this work, glucose oxidase (GOD) and catalase (CAT) were used simultaneously to produce gluconic acid from glucose. In order to reduce the distance between the two enzymes, and therefore improve efficiency, GOD and CAT were cross-linked together using genipin. Improvements in gluconic acid production were due to quick removal of harmful intermediate hydrogen peroxide by CAT. GOD activity was significantly affected by the proportion of CAT in the system, with GOD activity in the cross-linked multi-enzyme (CLME) being 10 times higher than that in an un-cross-linked GOD/CAT mixture. The glucose conversion rate after 15 h using 15 % glucose was also 10 % higher using the CLME than was measured using a GOD/CAT mixture.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Reference

  1. Zhang, H. (2013). Glucose oxidation using Au-containing bimetallic and trimetallic nanoparticles. Catalysis Science & Technology, 3, 268–278.

    Article  CAS  Google Scholar 

  2. Anastassiadis, S., & Morgunov, I. G. (2007). Gluconic acid production. Recent Patents on Biotechnology, 1, 167–180.

    Article  CAS  Google Scholar 

  3. Pal, P., Kumar, R., & Banerjee, S. (2016). Manufacture of gluconic acid: a review towards process intensification for green production. Chemical Engineering & Processing, 104, 160–171.

    Article  CAS  Google Scholar 

  4. Xue, R., & Woodley, J. M. (2012). Process technology for multi-enzymatic reaction systems. Bioresource Technology, 115, 183–195.

    Article  CAS  Google Scholar 

  5. Tomotani, E. J., & Vitolo, M. (2007). Immobilized glucose oxidase as a catalyst to the conversion of glucose into gluconic acid using a membrane reactor. Enzyme & Microbial Technology, 40, 1020–1025.

    Article  CAS  Google Scholar 

  6. Bankar, S. B., Bule, M. V., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase—an overview. Biotechnology Advances, 27, 489–501.

    Article  CAS  Google Scholar 

  7. Wong, C. M., Wong, K. H., & Chen, X. D. (2008). Glucose oxidase: natural occurrence, function, properties and industrial applications. Applied Microbiology & Biotechnology, 78, 927–938.

    Article  CAS  Google Scholar 

  8. Heo, J. (2014). Spatial distance effect of bienzymes on the efficiency of sequential reactions in a microfluidic reactor packed with enzyme-immobilized microbeads. Analytical Sciences, 30, 991–997.

    Article  CAS  Google Scholar 

  9. Godjevargova, T., Dayal, R., & Turmanova, S. (2004). Gluconic acid production in bioreactor with immobilized glucose oxidase plus catalase on polymer membrane adjacent to anion-exchange membrane. Macromolecular Bioscience, 4, 950–956.

    Article  CAS  Google Scholar 

  10. Silva, A. R. D., Tomotani, E. J., & Vitolo, M. (2011). Invertase, glucose oxidase and catalase for converting sucrose to fructose and gluconic acid through batch and membrane-continuous reactors, Brazilian. Journal of Pharmaceutical Sciences, 47, 399–407.

    Google Scholar 

  11. Onda, A., Ochi, T., Kajiyoshi, K., & Yanagisawa, K. (2008). A new chemical process for catalytic conversion of d-glucose into lactic acid and gluconic acid. Applied Catalysis A General, 343, 49–54.

    Article  CAS  Google Scholar 

  12. Cui, C., Tao, Y., Ge, C., Zhen, Y., Chen, B., & Tan, T. (2015). Synergistic effects of amine and protein modified epoxy-support on immobilized lipase activity. Colloids and Surfaces B: Biointerfaces, 133, 51–57.

    Article  CAS  Google Scholar 

  13. Cui, C., Guan, N., Xing, C., Chen, B., & Tan, T. (2016). Immobilization of Yarrowia lipolytica lipase Ylip 2 for the biocatalytic synthesis of phytosterol ester in a water activity controlled reactor. Colloids and Surfaces B: Biointerfaces, 146, 490–497.

    Article  CAS  Google Scholar 

  14. Cao, L., Langen, L. V., & Sheldon, R. A. (2003). Immobilised enzymes: carrier-bound or carrier-free? Current Opinion in Biotechnology, 14, 387–394.

    Article  CAS  Google Scholar 

  15. Talekar, S., Pandharbale, A., Ladole, M., Nadar, S., Mulla, M., Japhalekar, K., Pattankude, K., & Arage, D. (2013). Carrier free co-immobilization of alpha amylase, glucoamylase and pullulanase as combined cross-linked enzyme aggregates (combi-CLEAs): a tri-enzyme biocatalyst with one pot starch hydrolytic activity. Bioresource Technology, 147C, 269–275.

    Article  Google Scholar 

  16. Bhattacharya, A., & Pletschke, B. I. (2014). Magnetic cross-linked enzyme aggregates (CLEAs): a novel concept towards carrier free immobilization of lignocellulolytic enzymes. Enzyme & Microbial Technology, 61–62, 17–27.

    Article  Google Scholar 

  17. Periyasamy, K., Santhalembi, L., Mortha, G., Aurousseau, M., & Subramanian, S. (2016). Carrier-free co-immobilization of xylanase, cellulase and β-1,3-glucanase as combined cross-linked enzyme aggregates (combi-CLEAs) for one-pot saccharification of sugarcane bagasse. RSC Advances, 6, 32849–32857.

    Article  CAS  Google Scholar 

  18. Weiser, D., Varga, A., Kovács, K., Nagy, F., Szilágyi, A., Vértessy, P. B. G., Paizs, C., & Poppe, P. L. (2014). Bisepoxide cross-linked enzyme aggregates—new immobilized biocatalysts for selective biotransformations. Chem Cat Chem, 6, 1463–1469.

    CAS  Google Scholar 

  19. Frohbergh, M. E., Katsman, A., Botta, G. P., Lazarovici, P., Schauer, C. L., Wegst, U. G. K., & Lelkes, P. I. (2012). Electrospun hydroxyapatite-containing chitosan nanofibers crosslinked with genipin for bone tissue engineering. Biomaterials, 33, 9167–9178.

    Article  CAS  Google Scholar 

  20. Ma, W., Tang, C. H., Yin, S. W., Yang, X. Q., & Qi, J. R. (2013). Genipin-crosslinked gelatin films as controlled releasing carriers of lysozyme. Food Research International, 51, 321–324.

    Article  CAS  Google Scholar 

  21. Khan, A., Gallah, H., Riedl, B., Bouchard, J., Safrany, A., & Lacroix, M. (2016). Genipin cross-linked antimicrobial nanocomposite films and gamma irradiation to prevent the surface growth of bacteria in fresh meats. Innovative Food Science & Emerging Technologies, 35, 96–102.

    Article  CAS  Google Scholar 

  22. Li, Z., Zhang, Y., Su, Y., Ouyang, P., Ge, J., & Liu, Z. (2014). Spatial co-localization of multi-enzymes by inorganic nanocrystal-protein complexes. Chemical Communications, 50, 12465–12468.

    Article  CAS  Google Scholar 

  23. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analysis Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  24. Lu, T., Peng, X., Yang, H., & Ji, L. (1996). The production of glucose oxidase using the waste myceliums of Aspergillus niger and the effects of metal ions on the activity of glucose oxidase. Enzyme & Microbial Technology, 19, 339–342.

    Article  CAS  Google Scholar 

  25. Nakatsugawa, M., Nogami, A., Tada, H., Naito, S., Taniguchi, K., Aonuma, K., & Iesaka, Y. (2012). Reactions between beta-lactoglobulin and genipin: kinetics and characterization of the products. Journal of Agricultural & Food Chemistry, 60, 4327–4335.

    Article  Google Scholar 

  26. Idan, O., & Hess, H. (2013). Origins of activity enhancement in enzyme cascades on scaffolds. ACS Nano, 7, 8658–8665.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High-Tech R&D Program of China (863 Program) (2013AA020302), and the National Nature Science Foundation of China (21576019, 21436002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Biqiang Chen.

Additional information

Research Highlights

• A simple, efficient cross-linking method for multi-enzymes was developed.

• Genipin cross-linked GOD and CAT (CLME) significantly influences GOD activity.

• GOD activity saw a 10-fold increase when cross-linked with CAT by genipin.

• The CLME exhibited a higher catalytic efficiency for glucose conversion.

Electronic supplementary material

ESM 1

(DOCX 476 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, C., Chen, H., Chen, B. et al. Genipin Cross-Linked Glucose Oxidase and Catalase Multi-enzyme for Gluconic Acid Synthesis. Appl Biochem Biotechnol 181, 526–535 (2017). https://doi.org/10.1007/s12010-016-2228-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2228-z

Keywords

Navigation