Skip to main content
Log in

Pharmacological Effects and Pharmacokinetic Properties of a Dual-Function Peptide 5rolGLP-HV

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In order to better understand the therapeutic mechanism of dual-function peptide 5rolGLP-HV in treatment of treat diabetes and its complication of thrombosis, the pharmacological effects and pharmacokinetic properties of 5rolGLP-HV were conducted in this study. 5rolGLP-HV was orally administered to diabetic mice, and the hypoglycemic mechanism was investigated. Thrombotic mice were applied to study the thrombus dissolving ability of 5rolGLP-HV. The concentration of rolGLP and rHV in rat plasma following single oral dose or intravenous injection of 5rolGLP-HV was measured. Treatment with 5rolGLP-HV decreased insulin resistance (2.96 ± 1.43 vs. 9.35 ± 1.51, p < 0.05) of diabetic mice. 5rolGLP-HV shortened the length of thrombus in thrombosis mice (2.92 ± 0.74 vs. 5.92 ± 1.16 cm, p < 0.01) and extended the thrombin time (15.35 ± 1.22 vs. 8.67 ± 0.89 s, p < 0.01) of normal mice. Meanwhile, 5rolGLP-HV restored the damage of pancreatic, liver, kidney, and adipose tissues induced in the diabetic mice. 5rolGLP-HV exhibited a fast absorption and slow elimination phase after digested into rolGLP-1 and rHV in vivo. These results suggested that 5rolGLP-HV had an ideal therapeutic potential in the prevention of β cell dysfunction in type 2 diabetes and delay of the thrombus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

T2DM:

Type 2 diabetes mellitus

DPP-IV:

Dipeptidyl peptidase IV

rolGLP-1:

Recombinant oral long-acting GLP-1

HV:

Hirudin

rHV:

Recombinant hirudin

STZ:

Streptozotocin

FBG:

Fasting blood-glucose

FINS:

Fasting insulin

Reference

  1. Ferrannini, E. (2010). The stunned beta cell: a brief history. Cell Metabolism, 11(5), 349–352.

    Article  CAS  Google Scholar 

  2. Havale, S. H., & Pal, M. (2009). Medicinal chemistry approaches to the inhibition of dipeptidyl peptidase-4 for the treatment of type 2 diabetes. Bioorganic & Medicinal Chemistry, 17(5), 1783–1802.

    Article  CAS  Google Scholar 

  3. Henson, M. S., & O'Brien, T. D. (2006). Feline models of type 2 diabetes mellitus. ILAR Journal, 47(3), 234–242.

    Article  CAS  Google Scholar 

  4. Sharma, A. K., Bharti, S., Goyal, S., Arora, S., Nepal, S., Kishore, K., et al. (2011). Upregulation of PPARgamma by Aegle marmelos ameliorates insulin resistance and beta-cell dysfunction in high fat diet fed-streptozotocin induced type 2 diabetic rats. Phytotherapy Research, 25(10), 1457–1465.

  5. Honardoost, M., Sarookhani, M. R., Arefian, E., & Soleimani, M. (2014). Insulin resistance associated genes and miRNAs. Applied Biochemistry and Biotechnology, 174(1), 63–80.

    Article  CAS  Google Scholar 

  6. Danaei, G., Finucane, M. M., Lu, Y., Singh, G. M., Cowan, M. J., Paciorek, C. J., et al. (2011). National, regional, and global trends in fasting plasma glucose and diabetes prevalence since 1980: systematic analysis of health examination surveys and epidemiological studies with 370 country-years and 2.7 million participants. Lancet, 378(9785), 31–40.

  7. Shaw, J. E., Sicree, R. A., & Zimmet, P. Z. (2010). Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Research and Clinical Practice, 87(1), 4–14.

    Article  CAS  Google Scholar 

  8. Wild, S., Roglic, G., Green, A., Sicree, R., & King, H. (2004). Global prevalence of diabetes: estimates for the year 2000 and projections for 2030. Diabetes Care, 27(5), 1047–1053.

    Article  Google Scholar 

  9. Potenza, M. A., Nacci, C., Gagliardi, S., & Montagnani, M. (2011). Cardiovascular complications in diabetes: lessons from animal models. Current Medicinal Chemistry, 18(12), 1806–1819.

    Article  CAS  Google Scholar 

  10. Terry, T., Raravikar, K., Chokrungvaranon, N., & Reaven, P. D. (2012). Does aggressive glycemic control benefit macrovascular and microvascular disease in type 2 diabetes? Insights from ACCORD, ADVANCE, and VADT. Current Cardiology Reports, 14(1), 79–88.

    Article  Google Scholar 

  11. Buse, J. B., Ginsberg, H. N., Bakris, G. L., Clark, N. G., Costa, F., Eckel, R., et al. (2007). Primary prevention of cardiovascular diseases in people with diabetes mellitus: a scientific statement from the American Heart Association and the American Diabetes Association. Circulation, 115(1), 114–126.

  12. Oguma, T., Kuriyama, C., Nakayama, K., Matsushita, Y., Yoshida, K., Kiuchi, S., et al. (2015). The effect of combined treatment with canagliflozin and teneligliptin on glucose intolerance in Zucker diabetic fatty rats. Journal of Pharmacological Sciences, 127(4), 456–461.

  13. Hall, M. J., Adin, C. A., Borin-Crivellenti, S., Rudinsky, A. J., Rajala-Schultz, P., Lakritz, J., et al. (2015). Pharmacokinetics and pharmacodynamics of the glucagon-like peptide-1 analog liraglutide in healthy cats. Domestic Animal Endocrinology, 51, 114–121.

  14. Ma, X., Guan, Y., & Hua, X. (2014). Glucagon-like peptide 1-potentiated insulin secretion and proliferation of pancreatic beta-cells. Journal of Diabetes, 6(5), 394–402.

    Article  CAS  Google Scholar 

  15. Nadkarni, P., Chepurny, O. G., & Holz, G. G. (2014). Regulation of glucose homeostasis by GLP-1. Progress in Molecular Biology and Translational Science, 121, 23–65.

    Article  CAS  Google Scholar 

  16. Baggio, L. L., & Drucker, D. J. (2007). Biology of incretins: GLP-1 and GIP. Gastroenterology, 132(6), 2131–2157.

    Article  CAS  Google Scholar 

  17. Hou, J., Yan, R., Ding, D., Yang, L., Wang, C., Wu, Z., et al. (2007). Oral administration of a fusion protein containing eight GLP-1 analogues produced in Escherichia coli BL21(DE3) in streptozotocin-induced diabetic rats. Biotechnology Letters, 29(10), 1439–1446.

  18. Hou, J., Yan, R., Yang, L., Wu, Z., Wang, C., Ding, D., et al. (2007). High-level expression of fusion protein containing 10 tandem repeated GLP-1 analogs in yeast Pichia pastoris and its biological activity in a diabetic rat model. Bioscience, Biotechnology, and Biochemistry, 71(6), 1462–1469.

  19. Liu, Y., Lu, W. L., Zhang, X., Wang, X. Q., Zhang, H., & Zhang, Q. (2005). Pharmacodynamics and pharmacokinetics of recombinant hirudin via four non-parenteral routes. Peptides, 26(3), 423–430.

    Article  CAS  Google Scholar 

  20. Chang, J. Y. (1991). Stability of hirudin, a thrombin-specific inhibitor. The structure of alkaline-inactivated hirudin. The Journal of Biological Chemistry, 266(17), 10839–10843.

    CAS  Google Scholar 

  21. Donella-Deana, A., Varro, A., Dockray, G. J., & Pinna, L. A. (1991). Substitution of phosphotyrosine for sulphotyrosine in biologically active peptides. Enzymatic phosphorylation of a progastrin peptide confers immunoreactivity reminiscent of the sulphated derivative. Biochimica et Biophysica Acta, 1095(1), 75–77.

    Article  CAS  Google Scholar 

  22. Ni, Z., Zhang, Y., Wang, H., Wei, Y., Ma, B., Hao, J., et al. (2016). Construction of a fusion peptide 5rolGLP-HV and analysis of its therapeutic effect on type 2 diabetes mellitus and thrombosis in mice. Applied Biochemistry and Biotechnology, 179(1), 59–74.

  23. Barrett, Y. C., Wang, J., Song, Y., Pursley, J., Wastall, P., Wright, R., et al. (2012). A randomised assessment of the pharmacokinetic, pharmacodynamic and safety interaction between apixaban and enoxaparin in healthy subjects. Thrombosis and Haemostasis, 107(5), 916–924.

  24. Rowland, M., Peck, C., & Tucker, G. (2011). Physiologically-based pharmacokinetics in drug development and regulatory science. Annual Review of Pharmacology and Toxicology, 51, 45–73.

    Article  CAS  Google Scholar 

  25. Kumar, R., Sharma, B., Tomar, N. R., Roy, P., Gupta, A. K., & Kumar, A. (2011). In vivo evaluation of hypoglycemic activity of Aloe spp. and identification of its mode of action on GLUT-4 gene expression in vitro. Applied Biochemistry and Biotechnology, 164(8), 1246–1256.

    Article  CAS  Google Scholar 

  26. Morsy, M. A., Heeba, G. H., & Mahmoud, M. E. (2015). Ameliorative effect of eprosartan on high-fat diet/streptozotocin-induced early diabetic nephropathy in rats. European Journal of Pharmacology, 750, 90–97.

    Article  CAS  Google Scholar 

  27. Lennox, R., Porter, D. W., Flatt, P. R., Holscher, C., Irwin, N., & Gault, V. A. (2014). Comparison of the independent and combined effects of sub-chronic therapy with metformin and a stable GLP-1 receptor agonist on cognitive function, hippocampal synaptic plasticity and metabolic control in high-fat fed mice. Neuropharmacology, 86, 22–30.

    Article  CAS  Google Scholar 

  28. Stolar, M. (2010). Glycemic control and complications in type 2 diabetes mellitus. The American Journal of Medicine, 123(3 Suppl), S3–11.

    Article  CAS  Google Scholar 

  29. Doyle, M. E., & Egan, J. M. (2007). Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacology & Therapeutics, 113(3), 546–593.

    Article  CAS  Google Scholar 

  30. Ou, Y., Geng, P., Liao, G. Y., Zhou, Z., & Wu, W. T. (2009). Intracellular GSH and ROS levels may be related to galactose-mediated human lens epithelial cell apoptosis: role of recombinant hirudin variant III. Chemico-Biological Interactions, 179(2–3), 103–109.

    Article  CAS  Google Scholar 

  31. Park, S. H., Park, J. H., Shim, H. M., Na, A. Y., Bae, K. C., Lim, J. G., et al. (2015). Protection of pancreatic beta-cells against glucotoxicity by short-term treatment with GLP-1. Biochemical and Biophysical Research Communications, 459(4), 561–567.

  32. Campbell, J. E., & Drucker, D. J. (2013). Pharmacology, physiology, and mechanisms of incretin hormone action. Cell Metabolism, 17(6), 819–837.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This study is supported by the Key Technologies R&D Program of Tianjin (14ZCZDSY00013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minggang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ni, Z., Ma, X., Wang, B. et al. Pharmacological Effects and Pharmacokinetic Properties of a Dual-Function Peptide 5rolGLP-HV. Appl Biochem Biotechnol 181, 483–494 (2017). https://doi.org/10.1007/s12010-016-2225-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2225-2

Keywords

Navigation