Skip to main content
Log in

Antioxidant Activities of Peptoid-Grafted Chitosan Films

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The aim of this study was to investigate the possibility of immobilizing peptoid on chitosan film in order to generate new active material. Chitosan films have been grafted for the first time with short-length peptoid oligomers displaying antioxidant activities. The antioxidant activity of the selected peptoids was initially investigated with the DPPH assay and hydroxyl radical procedure. The metal chelating capacity of peptoids was also evaluated prior to their covalent attachment to chitosan. The benefit of chitosan functionalization with respect to its intrinsic antioxidant properties was finally evaluated in the present study. Interestingly, an increase of up to 90 % of the antioxidant activity of chitosan was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Morales González, J.A. (2013). Oxidative stress and chronic degenerative diseases—a role for antioxidants, ed. J.A. Morales González, InTech, Croatia. pp. 1-485.

  2. Di Bernardini, R., Harnedy, P., Bolton, D., Kerry, J., O’Neill, E., Mullen, A. M., & Hayes, M. (2011). Antioxidant and antimicrobial peptidic hydrolysates from muscle protein sources and by-products. Food Chem., 124, 1296–1307.

    Article  CAS  Google Scholar 

  3. Alvarez, I., Niemira, B. A., Fan, X., & Sommers, C. H. (2007). Inactivation of Salmonella enteritidis and Salmonella senftenberg in liquid whole egg using generally recognized as safe additives, ionizing radiation, and heat. J. Food Protect., 174, 1402–1409.

    Article  Google Scholar 

  4. Siripatrawan, U., & Harte, B. R. (2010). Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract. Food Hydrocolloids., 24, 770–775.

    Article  CAS  Google Scholar 

  5. Mati-Baouche, N., Elchinger, P. H., De Baynast, H., Pierre, G., Delattre, C., & Michaud, P. (2014). Chitosan as an adhesive. Eur. Polym. J., 60, 198–212.

    Article  CAS  Google Scholar 

  6. Kumar, M. N. V. R., Muzzarelli, R. A. A., Muzzarelli, C., Sashiwa, H., & Domb, A. J. (2004). Chitosan chemistry and pharmaceutical perspectives. Chem. Rev., 104, 6017–6084.

    Article  Google Scholar 

  7. Falguera, V., Quintero, J. P., Jiménez, A., Muñoz, J. A., & Ibarz, A. (2011). Edible films and coatings: structures, active functions and trends in their use. Trends Food Sci Tech., 22, 292–303.

    Article  CAS  Google Scholar 

  8. Simon, R. J., Kania, R. S., Zuckermann, R. N., Huebner, V. D., Jewell, D. A., Banville, S., Ng, S., Wang, L., Rosenberg, S., Marlowe, C. K., Spellmeyer, D. C., Tan, R., Frankel, A. D., Santi, D. V., Cohen, F. E., & Bartlett, P. A. (1992). Peptoids: a modular approach to drug discovery. Proc. Natl. Acad. Sci. U.S.A., 89, 9367–9371.

    Article  CAS  Google Scholar 

  9. Zuckermann, R. N. (2011). Peptoid origins. Biopolymers., 96, 545–555.

    Article  CAS  Google Scholar 

  10. Miller, S. M., Simon, R. J., Ng, S., Zuckermann, R. N., Kerr, J. M., & Moos, W. H. (1994). Proteolytic studies of homologous peptide and N-substituted glycine peptoid oligomers. Bioorg. Med. Chem. Lett., 4, 2657–2662.

    Article  CAS  Google Scholar 

  11. Fowler, S. A., & Blackwell, H. E. (2009). Structure-function relationships in peptoids: Recent advances toward deciphering the structural requirements for biological function. Org. Biomol. Chem., 7, 1508–1524.

    Article  CAS  Google Scholar 

  12. Szekely, T., Caumes, C., Roy, O., Faure, S., & Taillefumier, C. (2013). α-Peptoïdes et composés apparentés: synthèse et contrôle de la conformation. C. R. Chimie., 16, 318–330.

    Article  CAS  Google Scholar 

  13. Yoo, B., & Kirshenbaum, K. (2008). Peptoid architectures: elaboration, actuation, and application. Curr. Opin. Chem. Biol., 12, 714–721.

    Article  CAS  Google Scholar 

  14. Gangloff, N., Ulbricht, J., Lorson, T., Schlaad, H., & Luxenhofer, R. (2016). Peptoids and polypeptoids at the frontier of supra- and macromolecular engineering. Chem. Rev., 116, 1753–1802.

    Article  CAS  Google Scholar 

  15. Bailey, M. A., Ingram, M. J., & Naughton, D. P. (2004). A novel anti-oxidant and anti-cancer strategy: a peptoid anti-inflammatory drug conjugate with SOD mimic activity. Biochem. Biophys. Res. Commun., 317, 1155–1158.

    Article  CAS  Google Scholar 

  16. Fisher, A. E. O., Maxwell, S. C., & Naughton, D. P. (2003). Catalase and superoxide dismutase mimics for the treatment of inflammatory diseases. Inorg. Chem. Commun., 6, 1205–1208.

    Article  CAS  Google Scholar 

  17. Fisher, A. E. O., & Naughton, D. P. (2004). Metal ion chelating peptoids with potential as anti-oxidants: complexation studies with cupric ions. J. Inorg. Biochem., 98, 343–346.

    Article  CAS  Google Scholar 

  18. Zhang, Y., Li, L., Yu, C., & Hei, T. (2011). Chitosan-coated polystyrene microplate for covalent immobilization of enzyme. Anal. Bioanal. Chem., 401, 2311–2317.

    Article  CAS  Google Scholar 

  19. Hjelmgaard, T., Faure, S., Caumes, C., De Santis, E., Edwards, A. A., & Taillefumier, C. (2009). Convenient solution-phase synthesis and conformational studies of novel linear and cyclic α, β-alternating peptoids. Org. Lett., 11, 4100–4103.

    Article  CAS  Google Scholar 

  20. De Santis, E., Hjelmgaard, T., Caumes, C., Faure, S., Alexander, B. D., Holder, S. J., Siligardi, G., Taillefumier, C., & Edwards, A. A. (2012). Effect of capping groups at the N- and C-termini on the conformational preference of α, β-peptoids. Org. Biomol. Chem., 10, 1108–1122.

    Article  CAS  Google Scholar 

  21. Ho, M.-H., Wang, D.-M., Hsieh, H.-J., Liu, H.-C., Hsien, T.-Y., Lai, J.-Y., & Hou, L.-T. (2005). Preparation and characterization of RGD-immobilized chitosan scaffolds. Biomat., 26, 3197–3206.

    Article  CAS  Google Scholar 

  22. Delattre, C., Pierre, G., Gardarin, C., Traikia, M., Elboutachfaiti, R., Isogai, A., & Michaud, P. (2015). Antioxidant activities of a polyglucuronic acid sodium salt obtained from TEMPO-mediated oxidation of xanthan. Carbohyd Polym., 116, 34–41.

    Article  CAS  Google Scholar 

  23. Dinis, T. C. P., Madeira, V. M. C., & Almeida, L. M. (1994). Action of phenolic derivatives (acetaminophen, salicylate, and 5-aminosalicylate) as inhibitors of membrane lipid peroxidation and as peroxyl radical scavengers. Arch. Biochem. Biophys., 315, 161–169.

    Article  CAS  Google Scholar 

  24. Rice-Evans, C. A., Miller, N. J., & Paganga, G. (1996). Structure-antioxidant activity relationships of flavonoids and phenolic acids. Free Radic. Biol. Med., 20, 933–956.

    Article  CAS  Google Scholar 

  25. Maulucci, N., Izzo, I., Bifulco, G., Aliberti, A., De Cola, C., Comegna, D., Gaeta, C., Napolitano, A., Pizza, C., Tedesco, C., Flot, D., & De Riccardis, F. (2008). Synthesis, structures, and properties of nine-, twelve-, and eighteen-membered N-benzyloxyethyl cyclic α-peptoids. Chem. Commun., 33, 3927–3929.

    Article  Google Scholar 

  26. De Cola, C., Licen, S., Comegna, D., Cafaro, E., Bifulco, G., Izzo, I., Tecilla, P., & De Riccardis, F. (2009). Size-dependent cation transport by cyclic alpha-peptoid ion carriers. Org. Biomol. Chem., 7, 2851–2854.

    Article  CAS  Google Scholar 

  27. De Cola, C., Fiorillo, G., Meli, A., Aime, S., Gianolio, E., Izzo, I., & De Riccardis, F. (2014). Gadolinium-binding cyclic hexapeptoids: synthesis and relaxometric properties. Org. Biomol. Chem., 12, 424–431.

    Article  CAS  Google Scholar 

  28. Friedman, M., & Juneja, V. K. (2010). Review of antimicrobial and antioxidative activities of chitosans in food. J. Food Prot., 73, 1737–1761.

    Article  CAS  Google Scholar 

  29. Khare, A. K., Biswas, A. K., & Sahoo, J. (2014). Comparison study of chitosan, EDTA, eugenol and peppermint oil for antioxidant and antimicrobial potentials in chicken noodles and their effect on colour and oxidative stability at ambient temperature storage. LWT - Food Sci Technol., 55, 286–293.

    Article  CAS  Google Scholar 

  30. Liu, J., Wen, X.-Y., Lu, J.-F., Kan, J., & Jin, C.-H. (2014). Free radical mediated grafting of chitosan with caffeic and ferulic acids: Structures and antioxidant activity. Int. J. Biol. Macromol., 65, 97–106.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work received sponsorship by the French government under the “Investissements d'avenir” research program via the IMobS3 Laboratory of Excellence (ANR-10-LABX-16-01), by the European Union under the EU Regional competitiveness and employment program 2007–2013 (ERDF-Auvergne region), and by the Auvergne region (CPER “axe Innovapole”).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Delattre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Elchinger, PH., Delattre, C., Faure, S. et al. Antioxidant Activities of Peptoid-Grafted Chitosan Films. Appl Biochem Biotechnol 181, 283–293 (2017). https://doi.org/10.1007/s12010-016-2212-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2212-7

Keywords

Navigation