Skip to main content

Advertisement

Log in

Thermophilic Dry Methane Fermentation of Distillation Residue Eluted from Ethanol Fermentation of Kitchen Waste and Dynamics of Microbial Communities

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Thermophilic dry methane fermentation is advantageous for feedstock with high solid content. Distillation residue with 65.1 % moisture content was eluted from ethanol fermentation of kitchen waste and subjected to thermophilic dry methane fermentation, after adjusting the moisture content to 75 %. The effect of carbon to nitrogen (C/N) ratio on thermophilic dry methane fermentation was investigated. Results showed that thermophilic dry methane fermentation could not be stably performed for >10 weeks at a C/N ratio of 12.6 and a volatile total solid (VTS) loading rate of 1 g/kg sludge/d; however, it was stably performed at a C/N ratio of 19.8 and a VTS loading rate of 3 g/kg sludge/d with 83.4 % energy recovery efficiency. Quantitative PCR analysis revealed that the number of bacteria and archaea decreased by two orders of magnitude at a C/N ratio of 12.6, whereas they were not influenced at a C/N ratio of 19.8. Microbial community analysis revealed that the relative abundance of protein-degrading bacteria increased and that of organic acid-oxidizing bacteria and acetic acid-oxidizing bacteria decreased at a C/N ratio of 12.6. Therefore, there was accumulation of NH4 + and acetic acid, which inhibited thermophilic dry methane fermentation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Balat, M., Balat, H., & Oz, C. (2008). Progress in bioethanol processing. Progress in Energy and Combustion Science, 34, 551–573.

    Article  CAS  Google Scholar 

  2. Balat, M. (2011). Production of bioethanol from lignocellulosic materials via the biochemical pathway: a review. Energy Conversion and Management, 52, 858–875.

    Article  CAS  Google Scholar 

  3. De Oliveira, M. E. D., Vaughan, B. E., & Rykiel, E. J. (2005). Ethanol as fuel: energy, carbon dioxide balances, and ecological footprint. Bioscience, 55, 593–602.

    Article  Google Scholar 

  4. Balat, M., & Balat, H. (2009). Recent trends in global production and utilization of bio-ethanol fuel. Applied Energy, 86, 2273–2282.

    Article  CAS  Google Scholar 

  5. Tao, J., Yu, S. R., & Wu, T. X. (2011). Review of China’s bioethanol development and a case study of fuel supply, demand and distribution of bioethanol expansion by national application of E10. Biomass and Bioenergy, 35, 3810–3829.

    Article  Google Scholar 

  6. Rabelo, S. C., Carrere, H., Maciel Filho, R., & Costa, A. C. (2011). Production of bioethanol, methane and heat from sugarcane bagasse in a biorefinery concept. Bioresource Technology, 102, 7887–7895.

    Article  CAS  Google Scholar 

  7. Nishimura, H., Tan, L., Sun, Z. Y., Tang, Y. Q., Kida, K., & Morimura, S. (2016). Efficient production of ethanol from waste paper and the biochemical methane potential of stillage eluted from ethanol fermentation. Waste Management, 48, 644–651.

    Article  CAS  Google Scholar 

  8. Koike, Y., An, M. Z., Tang, Y. Q., Syo, T., Osaka, N., Morimura, S., & Kida, K. (2009). Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process. Journal of Bioscience and Bioengineering, 108, 508–512.

    Article  CAS  Google Scholar 

  9. Owamah, H. I., Dahunsi, S. O., Oranusi, U. S., & Alfa, M. I. (2014). Fertilizer and sanitary quality of digestate biofertilizer from the co-digestion of food waste and human excreta. Waste Management, 34, 747–752.

    Article  CAS  Google Scholar 

  10. Li, Y. F., Nelson, M. C., Chen, P. H., Graf, J., Li, Y., & Yu, Z. (2015). Comparison of the microbial communities in solid-state anaerobic digestion (SS-AD) reactors operated at mesophilic and thermophilic temperatures. Applied Microbiology and Biotechnology, 99, 969–980.

    Article  CAS  Google Scholar 

  11. Wang, Y. F., Tan, L., Wang, T., Sun, Z. Y., Tang, Y. Q., & Kida, K. (2016). Production of ethanol from kitchen waste by using flocculating Saccharomyces cerevisiae KF-7. Environmental Technology. doi:10.1080/09593330.2016.1192224.

    Google Scholar 

  12. Nelson, M. C., Morrison, H. G., Benjamino, J., Grim, S. L., & Graf, J. (2014). Analysis, optimization and verification of Illumina-generated 16S rRNA gene amplicon surveys. PloS One, 9, e94249.

    Article  Google Scholar 

  13. Sun, Z. Y., Zhang, J., Zhong, X. Z., Tan, L., Tang, Y. Q., & Kida, K. (2016). Production of nitrate-rich compost from the solid fraction of dairy manure by a lab-scale composting system. Waste Management. doi:10.1016/j.wasman.2016.03.002.

    Google Scholar 

  14. Kida, K., Morimura, S., & Sonoda, Y. (1993). Accumulation of propionic acid during anaerobic treatment of distillery wastewater from barley-shochu making. Journal of Fermentation and Bioengineering, 75, 213–216.

    Article  CAS  Google Scholar 

  15. Takaki, M., Tan, L., Murakami, T., Tang, Y. Q., Sun, Z. Y., Morimura, S., & Kida, K. (2015). Production of biofuels from sweet sorghum juice via ethanol–methane two-stage fermentation. Industrial Crops and Products, 63, 329–336.

    Article  CAS  Google Scholar 

  16. Tan, L., Sun, Z. Y., Okamoto, S., Takaki, M., Tang, Y. Q., Morimura, S., & Kida, K. (2015). Production of ethanol from raw juice and thick juice of sugar beet by continuous ethanol fermentation with flocculating yeast strain KF-7. Biomass and Bioenergy, 81, 265–272.

    Article  CAS  Google Scholar 

  17. Buswell, A., & Mueller, H. (1952). Mechanism of methane fermentation. Industrial and Engineering Chemistry, 44, 550–552.

    Article  CAS  Google Scholar 

  18. Koch, K., Wichern, M., Lübken, M., & Horn, H. (2009). Mono fermentation of grass silage by means of loop reactors. Bioresource Technology, 100, 5934–5940.

    Article  CAS  Google Scholar 

  19. Ioelovich, M. (2014). Waste paper as promising feedstock for production of biofuel. Journal of Scientific Research and Reports, 3, 905–916.

    Article  Google Scholar 

  20. Wang, X. S., Song, A. D., Li, L. P., Li, X. H., Zhang, R., & Bao, J. (2011). Effect of calcium carbonate in waste office paper on enzymatic hydrolysis efficiency and enhancement procedures. Korean Journal of Chemical Engineering, 28, 550–556.

    Article  Google Scholar 

  21. Jiang, X., Hayashi, J., Sun, Z. Y., Yang, L., Tang, Y. Q., Oshibe, H., Osaka, N., & Kida, K. (2013). Improving gas production from protein-rich distillery wastewater by decreasing ammonia inhibition. Process Biochemistry, 48, 1778–1784.

    Article  CAS  Google Scholar 

  22. Yenigün, O., & Demirel, B. (2013). Ammonia inhibition in anaerobic digestion: a review. Process Biochemistry, 48, 901–911.

    Article  Google Scholar 

  23. Kida, K., Shigematsu, T., Kijima, J., Numaguchi, M., Mochinaga, Y., Abe, N., & Morimura, S. (2001). Influence of Ni2+ and Co2+ on methanogenic activity and the amounts of coenzymes involved in methanogenesis. Journal of Bioscience and Bioengineering, 91, 590–595.

    Article  CAS  Google Scholar 

  24. Hania, W. B., Godbane, R., Postec, A., Hamdi, M., Ollivier, B., & Fardeau, M. L. (2012). Defluviitoga tunisiensis gen. Nov., sp. nov., a thermophilic bacterium isolated from a mesothermic and anaerobic whey digester. International Journal of Systematic and Evolutionary Microbiology, 62, 1377–1382.

    Article  Google Scholar 

  25. Simankova, M. V., Chernych, N. A., Osipov, G. A., & Zavarzin, G. A. (1993). Halocella cellulolytica gen. Nov., sp. nov., a new obligately cnaerobic, halophilic, cellulolytic bacterium. Systematic and Applied Microbiology, 16, 385–389.

    Article  CAS  Google Scholar 

  26. Murray, W. D. (1986). Acetivibrio cellulosolvensis a synonym for Acetivibrio cellulolyticus: emendation of the genus Acetivibrio. International Journal of Systemtic Bacteriology, 36, 314–316.

    Article  CAS  Google Scholar 

  27. Kuhnert, P., Capaul, S. E., Nicolet, J., & Frey, J. (1996). Phylogenetic positions of Clostridium chauvoei and Clostridium septicurn based on 16S rRNA gene sequences. International Journal of Systemtic Bacteriology, 46, 1174–1176.

    Article  CAS  Google Scholar 

  28. Jabari, L., Gannoun, H., Cayol, J. L., Hamdi, M., Fauque, G., Ollivier, B., & Fardeau, M. L. (2012). Characterization of Defluviitalea saccharophila gen. Nov., sp. nov., a thermophilic bacterium isolated from an upflow anaerobic filter treating abattoir wastewaters, and proposal of Defluviitaleaceae fam. Nov. International Journal of Systematic and Evolutionary Microbiology, 62, 550–555.

    Article  CAS  Google Scholar 

  29. Huang, Y., Sun, Y., Ma, S., Chen, L., Zhang, H., & Deng, Y. (2013). Isolation and characterization of Keratinibaculum paraultunense gen. Nov., sp. nov., a novel thermophilic, anaerobic bacterium with keratinolytic activity. FEMS Microbiology Letters, 345, 56–63.

    Article  CAS  Google Scholar 

  30. Chen, S., & Dong, X. (2005). Proteiniphilum acetatigenes gen. Nov., sp. nov., from a UASB reactor treating brewery wastewater. International Journal of Systemtatic and Evolutionary Microbiology, 55, 2257–2261.

    Article  CAS  Google Scholar 

  31. Orlygsson, J., Krooneman, J., Collins, M. D., Pascual, C., & Gottschal, J. C. (1996). Clostridium acetireducens sp. nov., a novel amino acid-oxidizing, acetate-reducing anaerobic bacterium. International Journal of Systemtic Bacteriology, 46, 454–459.

    Article  CAS  Google Scholar 

  32. McInerney, M. J., Bryant, M. P., Hespell, R. B., & Costerton, J. W. (1981). Syntrophomonas wolfei gen. Nov. sp. nov., an anaerobic syntrophic, fatty acid-oxidizing bacterium. Applied and Environmental Microbiology, 41, 1029–1039.

    CAS  Google Scholar 

  33. Schnurer, A., Schink, B., & Svensson, B. H. (1996). Clostridium ultunense sp. nov., a mesophilic bacterium oxidizing acetate in syntrophic association with a hydrogenotrophic methanogenic bacterium. International Journal of Systematic Bacteriology, 46, 1145–1152.

    Article  CAS  Google Scholar 

  34. Dridi, B. d., Fardeau, M. L., Ollivier, B., Raoult, D., & Drancourt, M. (2012). Methanomassiliicoccus luminyensis gen. Nov., sp. nov., a methanogenic archaeon isolated from human faeces. International Journal of Systemtatic and Evolutionary Microbiology, 62, 1902–1907.

    Article  CAS  Google Scholar 

  35. Pullammanappallil, P. C., Chynoweth, D. P., Lyberatos, G., & Svoronos, S. A. (2001). Stable performance of anaerobic digestion in the presence of a high concentration of propionic acid. Bioresource Technology, 78, 165–169.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kenji Kida.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, YL., Tan, L., Wang, TT. et al. Thermophilic Dry Methane Fermentation of Distillation Residue Eluted from Ethanol Fermentation of Kitchen Waste and Dynamics of Microbial Communities. Appl Biochem Biotechnol 181, 125–141 (2017). https://doi.org/10.1007/s12010-016-2203-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2203-8

Keywords

Navigation