Skip to main content
Log in

Solvent Free Lipase Catalysed Synthesis of Ethyl Laurate: Optimization and Kinetic Studies

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The current research work represents solvent free enzymatic synthesis of fatty acid ethyl ester; ethyl laurate. Immobilized lipase Fermase CALB™10,000 was used for the synthesis of ethyl laurate from ethanol and lauric acid. The influence of process parameters such as catalyst loading, speed of agitation, mole ratio, molecular sieves and temperature were studied. Fermase CALB™10,000 offered a conversion of 92.46 % at 60 °C in 4 h at optimized condition. The experimental data was best fitted by the Random Bi-Bi model with inhibition of both the substrates i.e. lauric acid and ethanol. The following kinetic parameters were retrieved from the model: Vmax = 1.243 × 103 mmol/min/g enzyme; KA = 0.1283 mmol; KB = 8.51 mmol; KiA = 5.098 mmol; and SSE = 0.0142. The activation energy for the enzymatic esterification was also determined and calculated to be 28.49 kJ/mol. A maximum conversion of 71 % was obtained after 5 successive reuse of Fermase CALB™10,000 lipase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Welsh, F. W., Murray, W. D., & Williams, R. E. (1989). Microbiological and enzymatic production of flavor and fragrance chemicals. Critical Reviews in Biotechnology, 9(2), 105–169.

    Article  CAS  Google Scholar 

  2. Dange, P. N., Sharma, A., & Rathod, V. K. (2014). Synthesis of methyl butyrate using heterogeneous catalyst: kinetic studies. Catalysis Letters, 144, 1537–1546.

    Article  CAS  Google Scholar 

  3. Yadav, G. D., & Yadav, A. R. (2012). Insight into esterification of eugenol to eugenol benzoate using a solid super acidic modified zirconia catalyst UDCaT-5. Chemical Engineering Journal, 192, 146–155.

    Article  CAS  Google Scholar 

  4. Aravindan, R., Anbumathi, P., & Viruthagiri, T. (2007). Lipase applications in food industry. Indian Journal of Biotechnology, 6, 141–158.

    CAS  Google Scholar 

  5. Singh, P., Saxena, D. K., & Naik, S. N. (2014). Synthesis of food flavors by enzymatic esterification process. International Journal of Science and Research, 3(9), 2113–2116.

    Google Scholar 

  6. Chiaradia, V., Paroul, N., Cansian, R. L., Júnior, C. V., Detofol, M. R., Lerin, L. A., & Oliveira, D. (2012). Synthesis of eugenol esters by lipase-catalyzed reaction in solvent-free system. Applied Biochemistry and Biotechnology, 168(4), 742–751.

    Article  CAS  Google Scholar 

  7. Kim, J.-H., Bhatia, S. K., Yoo, D., Seo, H. M., Yi, D.-H., Kim, H. J., & Yang, Y.-H. (2015). Lipase-catalyzed production of 6-O-cinnamoyl-sorbitol from D-sorbitol and Cinnamic acid esters. Applied Biochemistry and Biotechnology, 176(1), 244–252.

    Article  CAS  Google Scholar 

  8. Shinde, S. D., & Yadav, G. D. (2015). Insight into microwave-assisted lipase catalyzed synthesis of geranyl cinnamate: optimization and kinetic modeling. Applied Biochemistry and Biotechnology, 175(4), 2035–2049.

    Article  CAS  Google Scholar 

  9. Khan, N. R., & Rathod, V. K. (2015). Enzyme catalyzed synthesis of cosmetic esters and its intensification: a review. Process Biochemistry, 11, 1793–1806.

    Article  Google Scholar 

  10. Garlapati, V. K., & Banerjee, R. (2013). Solvent-free synthesis of flavour esters through immobilized lipase mediated transesterification. Enzyme Research, 2013, 367410.

    Article  Google Scholar 

  11. Lorenzoni, A. S. G., Graebin, N. G., Martins, A. B., Fernandez-Lafuente, R., Záchia Ayub, M. A., & Rodrigues, R. C. (2012). Optimization of pineapple flavour synthesis by esterification catalysed by immobilized lipase from Rhizomucor miehei. Flavour and Fragance Journal, 27(2), 196–200.

    Article  CAS  Google Scholar 

  12. Sonare, N. R., & Rathod, V. K. (2010). Transesterification of used sunflower oil using immobilized enzyme. Journal of Molecular Catalysis B: Enzymatic, 66(1–2), 142–147.

    Article  CAS  Google Scholar 

  13. Souza, M. S., Aguieiras, E. C. G., Da Silva, M. A. P., & Langone, M. A. P. (2009). Biodiesel synthesis via esterification of feedstock with high content of free fatty acids. Applied Biochemistry and Biotechnology, 154(1–3), 253–267.

    CAS  Google Scholar 

  14. Sontakke, J. B., & Yadav, G. D. (2013). Optimization and kinetic modeling of lipase mediated enantioselective kinetic resolution of (±)-2-octanol. Natural Science, 05(09), 1025–1033.

    Article  CAS  Google Scholar 

  15. Romero, M. D., Gomez, J. M., Diaz-Suelto, B., Garcia-Sanz, A., & Baster, N. (2011). Kinetic resolution of (R,S)-2-butanol using enzymatic synthesis of esters. Applied Biochemistry and Biotechnology, 165(5–6), 1129–1140.

    Article  CAS  Google Scholar 

  16. Chang, S. W., & Shaw, J. F. (2009). Biocatalysis for the production of carbohydrate esters. New Biotechnology, 26(3–4), 109–116.

    Article  CAS  Google Scholar 

  17. Kobayashi, T. (2011). Lipase-catalyzed syntheses of sugar esters in non-aqueous media. Biotechnology Letters, 33(10), 1911–1919.

    Article  CAS  Google Scholar 

  18. Naik, M. K., Naik, S. N., & Mohanty, S. (2014). Enzymatic glycerolysis for conversion of sunflower oil to food based emulsifiers. Catalysis Today, 237, 145–149.

    Article  CAS  Google Scholar 

  19. Martínez, M. (2011). Synthesis of Biosurfactants : enzymatic esterification of Diglycerol and oleic acid. 1. Kinetic modeling. Industrial and Engineering Chemistry Research, 50, 6609–6614.

    Article  Google Scholar 

  20. IAL Consultants, UK (2013) An overview of the global flavours & fragrances market. 8 Edition.

  21. Sun, J., Yu, B., Curran, P., & Liu, S.-Q. (2013). Lipase-catalysed ester synthesis in solvent-free oil system: is it esterification or transesterification? Food Chemistry, 141(3), 2828–2832.

    Article  CAS  Google Scholar 

  22. Kuperkar, V. V., Lade, V. G., Prakash, A., & Rathod, V. K. (2014). Synthesis of isobutyl propionate using immobilized lipase in a solvent free system: optimization and kinetic studies. Journal of Molecular Catalysis B: Enzymatic, 99, 143–149.

    Article  CAS  Google Scholar 

  23. Foresti, M. L., & Ferreira, M. L. (2005). Solvent-free ethyl oleate synthesis mediated by lipase from Candida antarctica B adsorbed on polypropylene powder. Catalysis Today, 107-108, 23–30.

    Article  CAS  Google Scholar 

  24. Jose, E., Paiva, M. D., Graeser, V., Wypych, F., & Corazza, M. L. (2014). Kinetics of non-catalytic and ZnL 2 -catalyzed esterification of lauric acid with ethanol. Fuel, 117, 125–132.

    Article  Google Scholar 

  25. Kanwar, S. S., Kaushal, R. K., Verma, M. L., Kumar, Y., Chauhan, G. S., Gupta, R., & Chimni, S. S. (2005). Synthesis of ethyl laurate by hydrogel immobilized lipase of Bacillus coagulans MTCC-6375. Indian Journal of Microbiology, 45, 187–193.

    CAS  Google Scholar 

  26. Solarte, C., Yara-Varón, E., Eras, J., Torres, M., Balcells, M., & Canela-Garayoa, R. (2014). Lipase activity and enantioselectivity of whole cells from a wild-type Aspergillius flavus strain. Journal of Molecular Catalysis B: Enzymatic, 100, 78–83.

    Article  CAS  Google Scholar 

  27. Liu, Y., Zhang, R., Lian, Z., Wang, S., & Wright, A. T. (2014). Yeast cell surface display for lipase whole cell catalyst and its applications. Journal of Molecular Catalysis B: Enzymatic, 106, 17–25.

    Article  CAS  Google Scholar 

  28. Khan, N. R., Jadhav, S. V., & Rathod, V. K. (2015). Lipase catalysed synthesis of cetyl oleate using ultrasound: optimization and kinetic studies. Ultrasonics Sonochemistry, 27, 522–529.

    Article  CAS  Google Scholar 

  29. Lanjekar, K., & Rathod, V. K. (2013). Utilization of glycerol for the production of glycerol carbonate through greener route. Journal of Environmental Chemical Engineering, 1(4), 1231–1236.

    Article  CAS  Google Scholar 

  30. Yadav, G. D., & Borkar, I. V. (2008). Kinetic modeling of immobilized lipase catalysis in synthesis of n -butyl Levulinate. Industrial and Engineering Chemistry Research, 47(10), 3358–3363.

    Article  CAS  Google Scholar 

  31. Podkaminer, K. K., Shao, X., Hogsett, D. A., & Lynd, L. R. (2011). Enzyme inactivation by ethanol and development of a kinetic model for thermophilic simultaneous saccharification and fermentation at 50 °C with Thermoanaerobacterium saccharolyticum ALK2. Biotechnology and Bioengineering, 108(6), 1268–1278.

    Article  CAS  Google Scholar 

  32. Foresti, M. L., & Luján, M. (2004). Computational approach to solvent-free synthesis of ethyl oleate using Candida rugosa and Candida antarctica B lipases . I . Interfacial activation and substrate ( ethanol , oleic acid ) adsorption. Biomacromolecules, 5, 2366–2375.

    Article  CAS  Google Scholar 

  33. Lage, F. A. P., Bassi, J. J., Corradini, M. C. C., Todero, L. M., Luiz, J. H. H., & Mendes, A. A. (2016). Preparation of a biocatalyst via physical adsorption of lipase from Thermomyces lanuginosus on hydrophobic support to catalyze biolubricant synthesis by esterification reaction in a solvent-free system. Enzyme and Microbial Technology, 84, 56–67.

    Article  CAS  Google Scholar 

  34. Liu, Y., Tan, H., Zhang, X., Yan, Y., & Hameed, B. H. (2010). Effect of monohydric alcohols on enzymatic transesterification for biodiesel production. Chemical Engineering Journal, 157(1), 223–229.

    Article  CAS  Google Scholar 

  35. Rani, K. N. P., Neeharika, T. S. V. R., Kumar, T. P., Satyavathi, B., Sailu, C., & Prasad, R. B. N. (2015). Kinetics of enzymatic esterification of oleic acid and decanol for wax ester and evaluation of its physico-chemical properties. Journal of the Taiwan Institute of Chemical Engineers, 55, 12–16.

    Article  CAS  Google Scholar 

  36. Yadav, G. D., & Borkar, I. V. (2010). Lipase-catalyzed hydrazinolysis of phenyl benzoate : kinetic modeling approach. Process Biochemistry, 45(4), 586–592.

    Article  CAS  Google Scholar 

  37. Yadav, G. D., & Devendran, S. (2012). Lipase catalyzed synthesis of cinnamyl acetate via transesterification in non-aqueous medium. Process Biochemistry, 47(3), 496–502.

    Article  CAS  Google Scholar 

  38. Gnanaprakasam, A., Sivakumar, V. M., Surendhar, A., Thirumarimurugan, M., & Kannadasan, T. (2013). Recent strategy of biodiesel production from waste cooking oil and process influencing parameters: a review. Journal of Energy, 2013, 1–10.

    Article  Google Scholar 

  39. Perry, R. H., Green, D. W., & Maloney, J. O. (1997). Perry’s chemical engineers′ handbook (7th ed.). New York: McGraw-Hill.

    Google Scholar 

  40. Calderbank, P. H., & Moo-Young, M. B. (1961). The continuous phase heat and mass transfer properties of dispersions. Chemical Engineering Science, 16, 39.

    Article  CAS  Google Scholar 

  41. Büchs, J., Maier, U., Milbradt, C., & Zoels, B. (2000). Power consumption in shaking flasks on rotary shaking machines: II. Nondimensional description of specific power consumption and flow regimes in unbaffled flasks at elevated liquid viscosity. Biotechnology and Bioengineering, 68(6), 594–601.

    Article  Google Scholar 

  42. Jakovetić, S. M., Luković, N. D., Boškovic-Vragolović, N. M., Bezbradica, D. I., Picazo-Espinosa, R., & Knežević-Jugović, Z. D. (2013). Comparative study of batch and fluidized bed bioreactors for lipase-catalyzed ethyl cinnamate synthesis. Industrial and Engineering Chemistry Research, 52(47), 16689–16697.

    Article  Google Scholar 

  43. Sun, W.-J., Zhao, H.-X., Cui, F.-J., Li, Y.-H., Yu, S.-L., Zhou, Q., & Dong, Y. (2013). D-isoascorbyl palmitate: lipase-catalyzed synthesis, structural characterization and process optimization using response surface methodology. Chemistry Central Journal, 7(1), 114.

    Article  Google Scholar 

  44. Gray, C. J., Weissenborn, M. J., Eyers, C. E., & Flitsch, S. L. (2013). Enzymatic reactions on immobilised substrates. Chemical Society Reviews, 42(15), 6378–6405.

    Article  CAS  Google Scholar 

  45. Sheldon, R. A., & Van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: why, what and how. Chemical Society Reviews, 42(15), 6223–6235.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Virendra K. Rathod.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gawas, S.D., Jadhav, S.V. & Rathod, V.K. Solvent Free Lipase Catalysed Synthesis of Ethyl Laurate: Optimization and Kinetic Studies. Appl Biochem Biotechnol 180, 1428–1445 (2016). https://doi.org/10.1007/s12010-016-2177-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2177-6

Keywords

Navigation