Skip to main content

Advertisement

Log in

Technical, Economical, and Microbiological Aspects of the Microaerobic Process on H2S Removal for Low Sulfate Concentration Wastewaters

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

We studied the feasibility of the microaerobic process, in comparison with the traditional chemical absorption process (NaOH), on H2S removal in order to improve the biogas quality. The experiment consisted of two systems: R1, biogas from an anaerobic reactor was washed in a NaOH solution, and R2, headspace microaeration with atmospheric air in a former anaerobic reactor. The microaeration used for low sulfate concentration wastewater did not affect the anaerobic digestion, but even increased system stability. Methane production in the R2 was 14 % lower compared to R1, due to biogas dilution by the atmospheric air used. The presence of oxygen in the biogas reveals that not all the oxygen was consumed for sulfide oxidation in the liquid phase indicating mass transfer limitations. The reactor was able to rapidly recover its capacity on H2S removal after an operational failure. Bacterial and archaeal richness shifted due to changes in operational parameters, which match with the system functioning. Finally, the microaerobic system seems to be more advantageous for both technical and economical reasons, in which the payback of microaerobic process for H2S removal was 4.7 months.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. ATSRD (2006). Toxicological profile for hydrogen sulfide and carbonyl sulfide. Agency for Toxic Substances and Diase Registry.

  2. van der Zee, F. P., Villaverde, S., Garcia, P. A., & Fdz-Polanco, F. (2007). Sulfide removal by moderate oxygenation of anaerobic sludge environments. Bioresource Technology, 98, 518–524.

    Article  Google Scholar 

  3. Cirne, D. G., Zee, F. P., Fernandez-Polanco, M., & Fernandez-Polanco, F. (2008). Control of sulphide during anaerobic treatment of S-containing wastewaters by adding limited amounts of oxygen or nitrate. Reviews in Environmental Science and Bio/Technology, 7, 93–105.

    Article  CAS  Google Scholar 

  4. Fdz-Polanco, M., Diaz, I., Perez, S. I., Lopes, A. C., & Fdz-Polanco, F. (2009). Hydrogen sulphide removal in the anaerobic digestion of sludge by micro-aerobic processes: pilot plant experience. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 60, 3045–3050.

    Article  CAS  Google Scholar 

  5. Diaz, I., Perez, S. I., Ferrero, E. M., & Fdz-Polanco, M. (2011). Effect of oxygen dosing point and mixing on the microaerobic removal of hydrogen sulphide in sludge digesters. Bioresource Technology, 102, 3768–3775.

    Article  CAS  Google Scholar 

  6. Ramos, I., Perez, R., Reinoso, M., Torio, R., & Fdz-Polanco, M. (2014). Microaerobic digestion of sewage sludge on an industrial-pilot scale: the efficiency of biogas desulphurisation under different configurations and the impact of O2 on the microbial communities. Bioresource Technology, 164, 338–346.

    Article  CAS  Google Scholar 

  7. Rodriguez, E., Lopes, A., Fdz-Polanco, M., Stams, A. J., & Garcia-Encina, P. A. (2012). Molecular analysis of the biomass of a fluidized bed reactor treating synthetic vinasse at anaerobic and micro-aerobic conditions. Applied Microbiology and Biotechnology, 93, 2181–2191.

    Article  CAS  Google Scholar 

  8. Zitomer, D. H., & Shrout, J. D. (2000). High sulfate oxygen demand wastewater aerated methanogenic fluidized beds. Water Environment Research, 72, 90–97.

    Article  CAS  Google Scholar 

  9. Khanal, S. K., & Huang, J. C. (2003). Anaerobic treatment of high sulfate wastewater with oxygenation to control sulphide toxicity. Journal of Environmental Engineering, 129, 1104–1111.

    Article  CAS  Google Scholar 

  10. Diaz, I., Lopes, A. C., Perez, S. I., & Fdz-Polanco, M. (2010). Performance evaluation of oxygen, air and nitrate for the microaerobic removal of hydrogen sulphide in biogas from sludge digestion. Bioresource Technology, 101, 7724–7730.

    Article  CAS  Google Scholar 

  11. Botheju, D., & Bakke, R. (2011). Oxygen effects in anaerobic digestion - a review. The Open Waste Manage, 4, 1–19.

    Article  CAS  Google Scholar 

  12. Kobayashi, T., Li, Y. Y., Kubota, K., Harada, H., Maeda, T., & Yu, H. Q. (2012). Characterization of sulfide-oxidizing microbial mats developed inside a full-scale anaerobic digester employing biological desulfurization. Applied Microbiology and Biotechnology, 93, 847–857.

    Article  CAS  Google Scholar 

  13. Tang, K., Baskaran, V., & Nemati, M. (2009). Bacteria of the Sulphur cycle: an overview of microbiology, biokinetics and their role in petroleum and mining industries. Biochemical Engineering Journal, 44, 73–94.

    Article  CAS  Google Scholar 

  14. Krayzelova, L., Bartacek, J., Kolesarova, N., & Jenicek, P. (2014). Microaeration for hydrogen sulfide removal in UASB reactor. Bioresource Technology, 172, 297–302.

    Article  CAS  Google Scholar 

  15. Firmino, P. I. M., Silva, M. E. R., Cervantes, F. J., & dos Santos, A. B. (2010). Colour removal of dyes from synthetic and real textile wastewaters in one- and two-stage anaerobic systems. Bioresource Technology, 101, 7773–7779.

    Article  CAS  Google Scholar 

  16. APHA (2005). Standard methods for the examination of water and wastewater. American Public Health Association.

  17. Firmino, P. I. M., Farias, R. S., Buarque, P. M. C., Costa, M. C., Rodríguez, E., Lopes, A. C., & dos Santos, A. B. (2015). Engineering and microbiological aspects of BTEX removal in bioreactors under sulfate-reducing conditions. Chemical Engineering Journal, 260, 503–512.

    Article  CAS  Google Scholar 

  18. Häne, B. G., Jäger, K., & Drexler, H. G. (1993). The Pearson product-moment correlation coefficient is better suited for identification of DNA fingerprint profiles than band matching algorithms. Electrophoresis, 14, 967–972.

    Article  Google Scholar 

  19. Marzorati, M., Wittebolle, L., Boon, N., Daffonchio, D., & Verstraete, W. (2008). How to get more out of molecular fingerprints: practical tools for microbial ecology. Environmental Microbiology, 10, 1571–1581.

    Article  CAS  Google Scholar 

  20. Lebrero, R., Rodriguez, E., Perez, R., Garcia-Encina, P. A., & Munoz, R. (2013). Abatement of odorant compounds in one- and two-phase biotrickling filters under steady and transient conditions. Applied Microbiology and Biotechnology, 97, 4627–4638.

    Article  CAS  Google Scholar 

  21. Shen, C. F., & Guiot, S. R. (1996). Long-term impact of dissolved O2 on the activity of anaerobic granules. Biotechnology and Bioengineering, 49, 611–620.

    Article  CAS  Google Scholar 

  22. Jenicek, P., Keclik, F., Maca, J., & Bindzar, J. (2008). Use of microaerobic conditions for the improvement of anaerobic digestion of solid wastes. Water Science and Technology: a Journal of the International Association on Water Pollution Research, 58, 1491–1496.

    Article  CAS  Google Scholar 

  23. Tang, Y., Shigematsu, T., Ikbal, Morimura, S., & Kida, K. (2004). The effects of micro-aeration on the phylogenetic diversity of microorganisms in a thermophilic anaerobic municipal solid-waste digester. Water Research, 38, 2537–2550.

    Article  CAS  Google Scholar 

  24. Appels, L., Baeyens, J., Degrève, J., & Dewil, R. (2008). Principles and potential of the anaerobic digestion of waste-activated sludge. Progress in Energy and Combustion Science, 34, 755–781.

    Article  CAS  Google Scholar 

  25. Gutierrez, O., Mohanakrishnan, J., Sharma, K. R., Meyer, R. L., Keller, J., & Yuan, Z. (2008). Evaluation of oxygen injection as a means of controlling sulfide production in a sewer system. Water Research, 42, 4549–4561.

    Article  CAS  Google Scholar 

  26. Mc Donald, G. (2003). Biogeography: introduction to space, time, and life. The Professional Geographer, 55, 283–285.

    Google Scholar 

  27. Viana, Q. M., Viana, M. B., Vasconcelos, E. A. F., Santaella, S. T., & Leitão, R. C. (2014). Fermentative H2 production from residual glycerol: a review. Biotechnology Letters, 36, 1381–1390.

    Article  CAS  Google Scholar 

  28. Wittebolle, L., Marzorati, M., Clement, L., Balloi, A., Daffonchio, D., Heylen, K., De Vos, P., Verstraete, W., & Boon, N. (2009). Initial community evenness favours functionality under selective stress. Nature, 1–4.

Download references

Acknowledgments

The authors would like to thank the Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), an organization of the Brazilian Government for the development of Science and Technology, for the Master’s and PhD scholarships and financial support (Process 484979/2012-4 from Edital Universal) and Financiadora de Estudos e Projetos (FINEP) for the financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. B. Dos Santos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sousa, M.R., Oliveira, C.J.S., Lopes, A.C. et al. Technical, Economical, and Microbiological Aspects of the Microaerobic Process on H2S Removal for Low Sulfate Concentration Wastewaters. Appl Biochem Biotechnol 180, 1386–1400 (2016). https://doi.org/10.1007/s12010-016-2174-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2174-9

Keywords

Navigation