Skip to main content

Advertisement

Log in

Enhanced Performance of a Microbial Fuel Cell with a Capacitive Bioanode and Removal of Cr (VI) Using the Intermittent Operation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This study investigated a system which simultaneously produced electricity and stored energy in the MFC integrated MnO2-modified capacitive bioanode. Compared to the noncapacitive anode, the maximum power density of MFC with MnO2-modified bioanode reached 16.47 W m−3, which was 3.5 times higher than that of the bare anode (4.71 W m−3). During the charging-discharging experiment, the MFC with a capacitance bioanode has a higher average peak current density of 5.06 mA cm−2 and 36 times larger than that with the bare bioanode. With the capacitive electrode, it is possible to let the MFC at the same time for production and storage of renewable electricity. Then two different operations (intermittent operation and continuous operation) of the MFC with a capacitive bioanode were studied to degrade Cr (VI) in cathode chamber. Results showed that the Cr (VI) removal rates of intermittent operation are much higher than that of continuous operation under the same time in the closed circuit state. This is due to the good ability of storing and releasing electron of the biological capacitor with MnO2 modified material. And this study showed that MFC with a capacitive bioanode is better adapted to treat heavy metal pollutants by intermittent mode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zuo, Y., Cheng, S., Call, D., & Logan, B. E. (2007). Tubular membrane cathodes for scalable power generation in microbial fuel cell. Environmental Science & Technology, 41, 3347–3353.

    Article  CAS  Google Scholar 

  2. Logan, B. E., Hamelers, B., Rozendal, R., Schroeder, U., Keller, J., Freguiac, S., Verstraete, W., & Rabaey, K. (2006). Microbial fuel cells: methodology and technology. Environmental Science & Technology, 40, 5181–5192.

    Article  CAS  Google Scholar 

  3. Yuan, Y., Zhou, S. G., Liu, Y., & Tang, J. H. (2013). Nanostructured Macroporous bioanode based on polyaniline-modified natural loofah sponge for high-performance microbial fuel cells. Environmental Science & Technology, 47, 14525–14532.

    Article  CAS  Google Scholar 

  4. Ahn, Y., & Logan, B. E. (2010). Effectiveness of domestic wastewater treatment using microbial fuel cells at ambient and mesopheric temperatures. Bioresource Technology, 101, 469–475.

    Article  CAS  Google Scholar 

  5. Antonopoulou, G., Stamatelatou, K., Bebelis, S., & Lyberatos, G. (2010). Electricity generation from synthetic substrates and cheese whey using a two chamber microbial fuel cell. Biochemical Engineering Journal, 50, 10–15.

    Article  CAS  Google Scholar 

  6. Ortiz-Martínez, V., Salar-García, M., Hernandez-Fernández, F., & de los Ríos, A. (2015). Development and characterization of a new embedded ionic liquid based membrane-cathode assembly for its application in single chamber microbial fuel cells. Energy, 93, 1748–1757.

    Article  Google Scholar 

  7. Hernández-Fernández F., de los Ríos A., Salar-García M., Ortiz-Martínez V., Lozano-Blanco L., Godínez C., Tomás-Alonso F., & Quesada-Medina J. (2015) Fuel Processing Technology, 138, 284–297.

  8. Pant, D., Bogaert, G. V., Diels, L., & Vanbroekhoven, K. (2010). A review of the substrates used in microbial fuel cells (MFCs) for sustainable energy production. Bioresource Technolog, 101, 1533–1543.

    Article  CAS  Google Scholar 

  9. Papaharalabos, G., Greenman, J., Stinchcombe, A., Horsfield, I., Melhuish, C., & Ieropoulos, I. (2014). Dynamic electrical reconfiguration for improved capacitor charging in microbial fuel cell stacks. Journal of Power Sources, 272, 34–38.

    Article  CAS  Google Scholar 

  10. Dewan, A., Donovan, C., Heo, D., & Beyenal, H. (2010). Evaluating the performance of microbial fuel cells powering electronic devices. Journal of Power Sources, 195, 90–96.

    Article  CAS  Google Scholar 

  11. Shantaram, A., Beyenal, H., Veluchamy, R. R. A., & Lewandowski, Z. (2005). Wireless sensors powered by microbial fuel cells. Environmental Science & Technology, 39, 5037–5042.

    Article  CAS  Google Scholar 

  12. Tang, J., Yuan, Y., Liu, T., & Zhou, S. (2015). High-capacity carbon-coated titanium dioxide coreeshell nanoparticles modified three dimensional anodes for improved energy output in microbial fuel cells. Journal of Power Sources, 274, 170–176.

    Article  CAS  Google Scholar 

  13. Dewan, A., Beyenal, H., & Lewandowski, Z. (2009). Intermittent energy harvesting improves the performance of microbial fuel cells. Environmental Science & Technology, 43, 4600.

    Article  CAS  Google Scholar 

  14. Kim, Y., Hatzell, M. C., Hutchinson, A. J., & Logan, B. E. (2011). Capturing power at higher voltages from arrays of microbial fuel cells without voltage reversal. Energy & Environmental Science, 4, 4662–4667.

    Article  CAS  Google Scholar 

  15. Deeke, A., Sleutels, T. H. J. A., Heijne, A. T., Hamelers, H. V. M., & Buisman, C. J. N. (2013). Influence of the thickness of the capacitive layer on the performance of bioanodes in microbial fuel cells. Journal of Power Sources, 243, 611–616.

    Article  CAS  Google Scholar 

  16. Fu, Y., Yu, J., Zhang, Y., & Meng, Y. (2014). Graphite coated with manganese oxide/multiwall carbon nanotubes composites as anodes in marine benthic microbial fuel cells. Applied Surface Science, 317, 84–89.

    Article  CAS  Google Scholar 

  17. Xu, C., Kang, F., Li, B., & Du, H. (2010). Recent progress on manganese dioxide based supercapacitors. Journal of Materials Research., 25, 1421–1432.

    Article  CAS  Google Scholar 

  18. Ge, J., Yao, H., Hu, W., Yu, X., Yan, Y., Mao, L., Li, H., Vitae, S. L., & Yu, S. (2013). Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy, 2, 505–513.

    Article  CAS  Google Scholar 

  19. Kalathil, S., Nguyen, V. H., Shim, J., Khan, M. M., Lee, J., & Cho, M. H. (2013). Enhanced performance of a microbial fuel cell using CNT/MnO2 nanocomposite as a bioanode material. Journal of Nanoscience and Nanotechnology, 13, 7712–7716.

    Article  CAS  Google Scholar 

  20. Hatzell, M. C., Kim, Y., & Logan, B. E. (2013). Powering microbial electrolysis cells by capacitor circuits charged using microbial fuel cell. Journal of Power Sources, 229, 198–202.

    Article  CAS  Google Scholar 

  21. Liang, P., Yuan, L., Wu, W., Yang, X., & Huang, X. (2013). Enhanced performance of bio-cathode microbial fuel cells with the applying of transient-state operation modes. Bioresource Technology, 147, 228–233.

    Article  CAS  Google Scholar 

  22. Grondin, F., Perrier, M., & Tartakovsky, B. (2012). Microbial fuel cell operation with intermittent connection of the electrical load. Journal of Power Sources, 208, 18–23.

    Article  CAS  Google Scholar 

  23. Zhang, C., Liang, P., Jiang, Y., & Huang, X. (2015). Enhanced power generation of microbial fuel cell using manganese dioxide-coated anode in flow-through mode. Journal of Power Sources, 273, 580–583.

    Article  CAS  Google Scholar 

  24. Lv, Z., Xie, D., Yue, X., Feng, C., & Wei, C. (2012). Ruthenium oxide-coated carbon felt electrode: a highly active anode for microbial fuel cell applications. Journal of Power Sources, 210, 16–31.

    Article  Google Scholar 

  25. Yuan, H., Deng, L., Chen, Y., & Yuan, Y. (2016). MnO2/Polypyrrole/MnO2 multi-walled-nanotube-modified anode for high-performance microbial fuel cells. Electrochimica Acta, 196, 280–285.

    Article  CAS  Google Scholar 

  26. Ghasemi, M., Daud, W., Mokhtarian, N., Mayahi, A., Ismail, M., Anisi, F., Sedighi, M., & Alam, J. (2013). The effect of nitric acid, ethylenediamine, and diethanolamine modified polyaniline nanoparticles anode electrode in a microbial fuel cell. Internaltional Journal of Hydrogen Energy, 38, 9525–9532.

    Article  CAS  Google Scholar 

  27. Lv, Z., Chen, Y., Wei, H., Li, F., Hu, Y., Wei, C., & Feng, C. (2013). One-step electrosynthesis of polypyrrole/graphene oxide composites for microbial fuel cell application. Electrochimica Acta, 111, 366–373.

    Article  CAS  Google Scholar 

  28. Kumar, G., Awan, Z., Nahm, K., & Xavier, J. (2014). Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells. Biosensors and Bioelectronics, 53, 528–534.

    Article  Google Scholar 

  29. Fan, Y., Xu, S., Schaller, R., Jiao, J., Chaplen, F., & Liu, H. (2011). Nanoparticle decorated anodes for enhanced current generation in microbial electrochemical cells. Biosensors and Bioelectronics, 26, 1908–1912.

    Article  CAS  Google Scholar 

  30. Tian, Y., Liu, Z., Xue, R., & Huang, L. (2016). An efficient supercapacitor of three-dimensional MnO2 film prepared by chemical bath method. Journal of Alloys and Compounds, 671, 312–317.

    Article  CAS  Google Scholar 

  31. Deeke, A., Sleutels, T. H. J. A., Hamelers, H. V. M., & Buisman, C. J. N. (2012). Capacitive bioanodes enable renewable energy storage in microbial fuel cells. Environmental Science & Technology, 46, 3554–3560.

    Article  CAS  Google Scholar 

  32. Lv, Z., Xie, D., Li, F., Hu, Y., Wei, C., & Feng, C. (2014). Microbial fuel cell as a biocapacitor by using pseudo-capacitive anode materials. Journal of Power Sources, 246, 642–649.

    Article  CAS  Google Scholar 

  33. Peng, X., Yu, H., Ai, L., Li, N., & Wang, X. (2013). Time behavior and capacitance analysis of nano-Fe3O4 added microbial fuel cells. Bioresource Technology, 144, 689–692.

    Article  CAS  Google Scholar 

  34. Liang, P., Wu, W., Wei, J., Yuan, L., Xia, X., & Huang, X. (2011). Alternate charging and discharging of capacitor to enhance the electron production of bioelectrochemical systems. Environmental Science & Technology, 45, 6647–6653.

    Article  CAS  Google Scholar 

  35. Dewan, A., Beyenal, H., & Lewandowski, Z. (2009). Intermittent energy harvesting improves the performance of microbial fuel cells. Environmental Science & Technology, 43, 4600–4605.

    Article  CAS  Google Scholar 

Download references

Acknowledgment

The project was supported by National Natural Science Foundation of China (Nos. 21476053 and 51179033), the Doctoral Program of the Ministry of Education (No. 20132304110027), the Fundamental Research Funds for the Central Universities, and Special Fund Research Program for Talents of Science Technology Innovation in Harbin (No. 2009RFXXG204).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Wen or Ye Chen.

Additional information

Highlights

• A capacitive bioanode was made by electrodepositing MnO2 on carbon felt.

• The MFC’s power density improved 3.5 times with the capacitive bioanode.

• MFC with a capacitive bioanode was better adapted to treat heavy metal pollutants by using the intermittent mode.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wen, Q., Chen, Y. et al. Enhanced Performance of a Microbial Fuel Cell with a Capacitive Bioanode and Removal of Cr (VI) Using the Intermittent Operation. Appl Biochem Biotechnol 180, 1372–1385 (2016). https://doi.org/10.1007/s12010-016-2173-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2173-x

Keywords

Navigation