Skip to main content
Log in

The Influence of Sugar Cane Bagasse Type and Its Particle Size on Xylose Production and Xylose-to-Xylitol Bioconversion with the Yeast Debaryomyces hansenii

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

In the present study, the effect of the type of sugar cane bagasse (non-depithed or depithed) and its particle size on the production of xylose and its subsequent fermentation to xylitol by Debaryomyces hansenii CBS767 was investigated using a full factorial experimental design. It was found that the particle size range and whether bagasse was depithed or not had a significant effect on the concentration and yield of xylose in the resulting hemicellulose hydrolysate. Depithed bagasse resulted in higher xylose concentrations compared to non-depithed bagasse. The corresponding detoxified hemicellulose hydrolysates were used as fermentation media for the production of xylitol. The hemicellulose hydrolysate prepared from depithed bagasse also yielded meaningfully higher xylitol fermentation rates compared to non-depithed bagasse. However, in the case of non-depithed bagasse, the hemicellulose hydrolysate prepared from larger particle size range resulted in higher xylitol fermentation rates, whereas the effect in the case of non-depithed bagasse was not pronounced. Therefore, depithing of bagasse is an advantageous pretreatment when it is to be employed in bioconversion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Johnson, F. X., & Seebaluck, V. (2013). Bioenergy for sustainable development competitiveness: the role of sugar cane in Africa (p. 165). Routledge: Taylor and Francis group.

    Google Scholar 

  2. Najafi, G., Ghobadian, B., Tavakoli, T., & Yusaf, T. (2009). Potential of bioethanol production from agricultural wastes in Iran. Renewable and Sustainable Energy, 13(6/7), 1418–1427.

    Article  CAS  Google Scholar 

  3. Hemmasi, A. H., Samariha, A., Tabei, A., Nemati, M., & Khakifirooz, A. (2011). Study of morphological and chemical composition fibers from Iranian sugarcane bagasse. American-Eurasian Journal of Agricultural & Environmental Sciences, 11(4), 478–481.

    CAS  Google Scholar 

  4. Pandey, A., Soccol, R. C., Nigam, P., & Soccol, T. V. (2000). Biotechnological potential of agro-industrial residues, І: sugarcane bagasse. Bioresource Technology, 74, 69–80.

    Article  CAS  Google Scholar 

  5. Delgado, A. V., & Casanova, C. A. (2001). Sugar processing and by-products of the sugar industry. In FAO Agricultural Services Bulletin (FAO), no. 144/FAO, Rome (Italy). Agricultural Support Systems Div. pp. 143.

  6. Mann, A., & O'Hara, I. M. (2012). Predicting the effects of bagasse depithing operations on boiler combustion performance. In R. C. Bruce (Ed.), Proceedings of the Australian Society of Sugar Cane Technologists. Cairns: Australian Society of Sugar Cane Technologists Ltd / Scribe Consulting.

    Google Scholar 

  7. Touster, O., Reynolds, V. H., & Hutcheson, R. M. (1962). The reduction of L-xylose to xylitol on guinea pig liver mitochondria. The Journal of Biological Chemistry, 221, 697–709.

    Google Scholar 

  8. Rognstad, R., Wales, P., & Katz, J. (1982). Further evidence for the classical pentose phosphate cycle in the liver. Biochemical Journal, 208, 851–855.

    Article  CAS  Google Scholar 

  9. Ur-Rehman, S., Mushtaq, Z., Zahoor, T., Jamil, A., & Murtaza, M. (2015). Xylitol: a review on bioproduction, application, health benefits, and related safety issues. Critical Reviews in Food Science and Nutrition, 55(11), 1514–1528.

    Article  CAS  Google Scholar 

  10. Pepper, T., & Olinger, M. P. (1988). Xylitol in sugar-free confections. Food Technology, 42(10), 98–105.

    Google Scholar 

  11. Parajó, J. C., Dominguez, H., & Dominguez, J. M. (1998). Biotechnological production of xylitol part I: interest of xylitol and fundamentals of its biosynthesis. Bioresource Technology, 65, 191–201.

    Article  Google Scholar 

  12. Chen, X., Jiang, Z. H., Chen, S., & Qin, W. (2010). Microbial and bioconversion production of D-xylitol and its detection and application. International Journal of Biological Sciences, 6(7), 834–844.

    Article  CAS  Google Scholar 

  13. Guo, C., Zhao, C., He, P., Lu, D., Shen, A., & Jiang, N. (2006). Screening and characterization of yeasts for xylitol production. Journal of Applied Microbiology, 101(5), 1096–1104.

    Article  CAS  Google Scholar 

  14. Sampaio, F. C., da Silveira, W. B., Chaves-Alves, V. M., Passos, F. M. L., & Coelho, J. L. C. (2003). Screening of filamentous fungi for production of xylitol from D-xylose. Brazilian Journal of Microbiology, 34, 325–328.

    Article  Google Scholar 

  15. Granstrom, T. (2002). Biotechnological production of xylitol with candida yeasts. PhD thesis, Helsinki: Helsinki University of Technology.

  16. Dominguez, J. C., Gong Cheng, S., & Tsao, G. T. (1997). Production of xylitol from D-xylose by Debaryomyces hansenii. Applied Biochemistry and Biotechnology, 63-65, 117–127.

    Article  CAS  Google Scholar 

  17. Gírio, F. M., Amaro, C., Azinheira, H., Pelica, F., & Amaral-Collaco, M. T. (2000). Polyols production during single and mixed substrate fermentations in Debaryomyces hansenii. Bioresource Technology, 71, 245–251.

    Article  Google Scholar 

  18. Sampaio, F. C., Torre, P., Passos, F. M., de Moraes, C. A., Perego, P., & Converti, A. (2007). Influence of inhibitory compounds and minor sugars on xylitol production by Debaryomyces hansenii. Applied Biochemistry and Biotechnology, 136(2), 165–182.

    Article  CAS  Google Scholar 

  19. Prakasah, G., Varma, A. J., Prabhune, A., Shouche, Y., & Rao, M. (2011). Microbial production of xylitol from D- xylose and sugar cane bagasse using newly isolated thermotolerant yeast Debaryomyces hansenii. Bioresource Technology, 102(3), 3304–3308.

    Article  Google Scholar 

  20. Parajó, J. C., Dominguez, H., & Dominguez, J. M. (1997). Improved xylitol production with Debaryomyces hansenii NRRL Y-7426 from raw or detoxified wood hydrolysates. Enzyme and Microbial Technology, 21, 18–24.

    Article  Google Scholar 

  21. Parajó, J. C., Dominguez, H., & Dominguez, J. M. (1995). Xylitol from wood: study of some operational strategies. Food Chemistry, 57, 531–535.

    Article  Google Scholar 

  22. Alves, L., Felipe, M. G. A., Silva, J. B. A., Silva, S. S., & Prata, A. M. R. (1998). Pretreatment of sugar cane bagasse hemicellulose hydrolysate for xylitol production by Candida guilliermondii. Applied Biochemistry and Biotechnology, 70/72, 89–98.

    Article  Google Scholar 

  23. TAPPI Test Method Methods. Atlanta: Technical Association of the Pulp and Paper Industry.

  24. Harrison, M. D., Zhang, Z., Shand, K., Chong, B. F., Nichols, J., Oeller, P., et al. (2014). The combination of plant-expressed cellobiohydrolase and low dosages of cellulases for the hydrolysis of sugar cane bagasse. Biotechnology for Biofuels, 7, 131.

    Article  Google Scholar 

  25. Rambo, M. K. D., Bevilaqua, D. B., Brenner e Ayrton, F., & Martins, C. G. B. (2013). Xylitol from rice husks by acid hydrolysis and Candida yeast fermentation. Quimica Nova, 36(5), 634–639.

    Article  CAS  Google Scholar 

  26. Akpinar, O., Levent, O., Bostanic, S., Bakir, U., & Yilmaz, L. (2011). The optimization of dilute acid hydrolysis of cotton stalk in xylose fermentation. Applied Biochemistry and Biotechnology, 163(2), 313–325.

    Article  CAS  Google Scholar 

  27. Jeevan, P., Nelson, R., & Rena, A. E. (2011). Optimization studies on acid hydrolysis of corn cob hemicellulosic hydrolysate for microbial production of xylitol. Journal of Microbiology and Biotechnology Research, 1(4), 114–123.

    CAS  Google Scholar 

  28. Chandel, A. K., Antunes, F. A. F., Vaz de Arruda, P., Milessi, T. S. S., da Silva, S. S., & Felipe, M. G. A. (2012). Dilute acid hydrolysis of agro-residues for the depolymerization of hemicellulose: state-of-the-art. In S. S. da Silva & A. K. Chandel (Eds.), D-xylitol: fermentative production, application and commercialization (pp. 39–61). Berlin Heidelberg: Springer-Verlag.

    Chapter  Google Scholar 

  29. Silva, D. D. V., Felipe, M. G. A., Mancilha, I. M., & da Silva, S. S. (2005). Evaluation of inoculum of Candida guilliermondii grown in presence of glucose on xylose reductase and xylitol production during batch fermentation of sugarcane bagasse hydrolysate. Applied Biochemistry and Biotechnology, 121-124, 427–437.

    Article  Google Scholar 

  30. Preziosi-Belloy, L., Nolleau, V., & Navarro, J. M. (1997). Fermentation of hemicellulosic sugars and sugars mixtures to xylitol by Candida parapsilosis. Enzyme and Microbial Technology, 21, 24–129.

    Article  Google Scholar 

  31. Kim, J. H., Ryu, Y. W., & Seo, J. H. (1999). Analysis and optimization of two-substrate fermentation for xylitol production using Candida tropicalis. Journal of Industrial Microbiology & Biotechnology, 22, 181–186.

    Article  CAS  Google Scholar 

  32. Tavares, J. M., Durate, L. C., Amaral-Collaco, M. T., & Gírio, F. M. (2000). The influence of hexoses addition on the fermentation of d-xylose in Debaryomyces hansenii under continuous cultivation. Enzyme and Microbial Technology, 26(9–10), 743–747.

    Article  CAS  Google Scholar 

  33. Parajó, J. C., Dominguez, H., & Dominguez, J. M. (1995). Study of charcoal adsorption for improving the production of xylitol from wood hydrolysates. Bioprocess Engineering, 16, 39–43.

    Article  Google Scholar 

  34. Duarte, L. C., Carvalheiro, F., Tadeu, J., & Gírio, F. M. (2006). The combined effects of acetic acid, formic acid, and hydroquinone on Debaryomyces hansenii physiology. Applied Biochemistry and Biotechnology, 129-132, 461–475.

    Article  CAS  Google Scholar 

  35. Jönsson, L. J., & Martín, C. (2016). Pretreatment of lignocellulose: formation of inhibitory by-products and strategies for minimizing their effects. Bioresource Technology, 199, 103–112.

    Article  Google Scholar 

  36. Mussatto, S. I., Santos, J. C., & Roberto, I. (2004). Effect of pH and activated charcoal adsorption on hemicellulosic hydrolysate detoxification for xylitol production. Journal of Chemical Technology and Biotechnology, 79, 590–596.

    Article  CAS  Google Scholar 

  37. Parajó, J. C., Dominguez, H., & Dominguez, J. M. (1998). Biotechnological production of xylitol, part 3: operation in culture media made from lignocellulose hydrolysate. Bioresource Technology, 66, 25–40.

    Article  Google Scholar 

  38. Carvalheiro, F., Durate, L. C., Lopes, S., Parajó, J. C., Pereira, H., & Gírio, F. M. (2004). Evaluation of the detoxification of brewery’s spent grain hydrolysate for xylitol production by Debaryomyces hansenii CCMI941. Process Biochemistry, 40, 1215–1223.

    Article  Google Scholar 

  39. Kristensen, J. B., Felby, C., & Jørgensen, H. (2009). Yield-determining factors in high-solids enzymatic hydrolysis of lignocellulose. Biotechnology for Biofuels, 2, 11.

    Article  Google Scholar 

  40. Canilha, L., Rodrigues, R. C. L. B., Antunes, F. A. F., Chandel, A. K., Milessi, T. S. S., Felipe, M. G. A., & da Silva, S. S. (2013). Bioconversion of hemicellulose from sugarcane biomass into sustainable products Chapter 2 Sustainable degradation of lignocellulosic biomass—techniques, application and commercialization 15–45

  41. Canhila, L., Chandel, A. K., Milessi, T. S. S., Antunes, F. A. F., Freitas, W. L. C., Felipe, M. G. A., et al. (2012). Bioconversion of sugarcane biomass into ethanol: an overview about composition, pretreatment methods, detoxification of hydrolysates, enzymatic sacharification, and ethanol fermentation. Journal of Biomedicine & Biotechnology, 2012, Article ID 989572 .15 pages

    Google Scholar 

  42. Marton, J. M., Felipe, M. G. A., Almeida e Silva, J. B., & Pessoa Júnior, A. (2006). Evaluation of the activated charcoals and adsorption conditions used in the treatment of sugarcane bagasse hydrolysate for xylitol production. Brazilian Journal of Chemical Engineering, 23(01), 9–21.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

RKA is grateful to Reza Hassanzadeh for his aids in the preparation of the tables and figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Karimi Aghcheh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aghcheh, R.K., Bonakdarpour, B. & Ashtiani, F.Z. The Influence of Sugar Cane Bagasse Type and Its Particle Size on Xylose Production and Xylose-to-Xylitol Bioconversion with the Yeast Debaryomyces hansenii . Appl Biochem Biotechnol 180, 1141–1151 (2016). https://doi.org/10.1007/s12010-016-2157-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2157-x

Keywords

Navigation