Skip to main content
Log in

Anti-inflammatory Properties of Bioactive Peptide Derived from Gastropod Influenced by Enzymatic Hydrolysis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The visceral mass of the gastropod, Harpa ventricosa was hydrolysed using trypsin, alcalase and pepsin for 12 h to produce protein hydrolysates. Subsequently, the active hydrolysate was observed in the 3rd hour of tryptic hydrolysate (29.17 ± 0.62 and 34.85 ± 0.55 %) using human red blood cell (HRBC) membrane stabilization and albumin denaturation (AD) assays. The active hydrolysate was fractionated by membrane filtration unit, where <10-kDa fraction revealed better anti-inflammatory activity with IC50 value 6.27 ± 0.05 and 5.38 ± 0.02 mg/ml for HRBC and AD assays, respectively. Additionally, the active fraction contains essential and non-essential (aspartic acid, arginine, glutamic acid and leucine) amino acids and, sequentially, the active fraction was further purified using consecutive chromatography, in which fraction C-II exhibited strong anti-inflammatory activity (HRBC 56.02 ± 0.52 and AD 50.71 ± 1.10 % assays). The non-toxic, low molecular weight (690.2 Da) hexapeptide (Ala-Lys-Gly-Thr-Trp-Lys) suppressed the nitric oxide (NO) and pro-cytokine production in a dose-dependent manner on THP-1 cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Zhou, H. Y., Shin, E. M., Guo, L. Y., Youn, U. J., Bae, K., Kang, S. S., et al. (2008). Anti-inflammatory activity of 4-methoxyhonokiol is a function of the inhibition of iNOS and COX-2 expression in RAW264.7 macrophages via NF-kappa B, JNK and p 38 MAPK inactivation. European Journal of Pharmacology, 586, 340–349.

    Article  CAS  Google Scholar 

  2. Reddy, D. B., & Reddannam, P. (2009). Chebulagic acid (CA) attenuates LPS-induced inflammation by suppressing NF-kappa B and MAPK activation in RAW 264.7 macrophages. Biochemical and Biophysical Research Communications, 381, 112–117.

    Article  CAS  Google Scholar 

  3. Ackerman, N. R., & Beebe, J. B. (1974). Release of lysosomal enzymes by alveolar mononuclear cells. Nature, 247, 475–477.

    Article  CAS  Google Scholar 

  4. Opie, E. L. (1962). On the relation of necrosis and inflammation to denaturation of protein. Journal of Experimental Medicine, 115, 597–608.

    Article  CAS  Google Scholar 

  5. Wallace, J. L. (2001). Pathogenesis of NSAID-induced gastroduodenal mucosal injury. Best Practice & Research Clinical Gastroenterology, 15, 691–703.

    Article  CAS  Google Scholar 

  6. Baker, M. A., Maloy, W. L., Zasloff, M., & Jacob, L. S. (1993). Anticancer efficacy of Magainin 2 and analogue peptides. Cancer Research, 53, 3052–3057.

    CAS  Google Scholar 

  7. Cesaretti, M., Luppi, E., Maccari, F., & Volpi, N. (2004). Isolation and characterization of a heparin with high anticoagulant activity from the clam Tapes phylippinarum: evidence for the presence of a high content of antithrombin III binding site. Glycobiology, 14, 1275–1284.

    Article  CAS  Google Scholar 

  8. Jumeri, & Kim, S. M. (2011). Anticancer and anticancer activities of enzymatic hydrolysates of solitary tunicate (Styela clava). Food Science and Biotechnology, 20, 1075–1085.

    Article  Google Scholar 

  9. Hwang, J. W., Lee, S. J., Kim, Y. S., Kim, E. K., Ahn, C. B., Jeon, Y. J., et al. (2012). Purification and characterizatoin of a noval peptide with inhibitory effects on colitis induced mice by dextran sulfate sodium from enzymatic hydrolysates of Crassostrea gigas. Fish & Shellfish Immunology, 33, 993–999.

    Article  CAS  Google Scholar 

  10. Lee, S. J., Kim, E. K., Kim, Y. S., Hwang, J. W., Lee, K. H., Choi, D. K., et al. (2012). Purification and characterization of a nitric oxide inhibitory peptide from Ruditapes philippinarum. Food and Chemical Toxicology, 50, 1660–1666.

    Article  CAS  Google Scholar 

  11. Kim, E. K., Kim, Y. S., Hwang, J. W., Kang, S. H., Choi, D. K., Lee, K. H., et al. (2013). Purification of a novel nitiric oxide inhibitory peptide derived from enzymatic hydrolysates of Mytilus coruscus. Fish & Shellfish Immunology, 34, 1416–1420.

    Article  CAS  Google Scholar 

  12. Ahn, C. B., Cho, Y. S., & Je, J. Y. (2015). Purification and anti-inflammatory action of tripeptide from salmon pectoral fin byproduct protein hydrolysate. Food Chemistry, 168, 151–156.

    Article  CAS  Google Scholar 

  13. Brito, A. S., Arimatéia, D. S., Souza, L. R., Lima, M. A., Santos, V. O., Medeiros, V. P., et al. (2008). Anti-inflammatory properties of a heparin-like glycosaminoglycan with reduced anti-coagulant activity isolated from a marine shrimp. Bioorganic & Medicinal Chemistry, 16, 9588–9595.

    Article  CAS  Google Scholar 

  14. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). The original method. Journal of Biological Chemistry, 193, 265.

    CAS  Google Scholar 

  15. Lee, S. H., Chang, D. W., Lee, B. J., & Jeon, Y. J. (2009). Antioxidant activity of solubilized Tetraselmis suecica and Chlorella ellipsoidea by enzymatic digests. International Journal of Food Sciences and Nutrition, 14, 21–28.

    CAS  Google Scholar 

  16. Wanasundara, P. K. J. P. D., Roos, A. R. S., Amarowick, R., Ambrose, S. J., Pegg, R. B., & Shand, P. J. (2002). Peptides with angiotensin I converting enzyme (ACE) inhibitor activity from defibrinated hydrolyzed bovine plasma. Journal of Agricultural and Food Chemistry, 50, 6981–6985.

    Article  CAS  Google Scholar 

  17. Mizushima, Y. (1966). Screening test for anti-rheumatic drugs. Lancet, 2, 443–448.

    Article  Google Scholar 

  18. Chandra, S., Chatterjee, P., Dey, P., & Bhattacharya, S. (2012). Evaluation of in vitro anti-inflammatory activity of coffee against the denaturation of protein. Asian Pacific Journal of. Tropical Biomedicine, 178–180.

  19. Li, Y., Zhang, T., Wanmeng, M., & Liu, J. (2008). Food Chemistry, 106, 444–450.

    Article  CAS  Google Scholar 

  20. Mosmann, T. (1983). Journal of Immunological Methods, 65, 55–63.

    Article  CAS  Google Scholar 

  21. Sun, J., Zhang, X., Broderick, M., & Fein, H. (2003). Measurement of nitric oxide production in biological systems by using Griess reaction assay. Sensors, 3, 276–284.

    Article  CAS  Google Scholar 

  22. Nazeer, R. A., & Sri Suganya, U. (2014). Porous scaffolds of gelatin from the marine gastropod Ficus variegata with commercial cross linkers for biomedical applications. Food Science and Biotechnology, 23, 327–335.

    Article  CAS  Google Scholar 

  23. Shenoy, S., Shwetha, K., Prabhu, K., Maradi, R., Bairy, K. L., & Shanbhag, T. (2010). Evaluation of anti-inflammatory activity of Tephrosiapurpurea in rats. Asian Pacific Journal of Tropical Biomedicine., 3(3), 193–195.

    Article  Google Scholar 

  24. Debnath, P. C., Das, A., Islam, A., Islam, M. A., Hassan, M. M., & Uddin, S. M. G. (2013). Membrane stabilization—a possible mechanism of action for the anti-inflammatory activity of a Bangladeshi medicinal plant: Erioglossum rubiginosum (bara Harina). Pharmacognosy Journal, 5, 104–107.

    Article  Google Scholar 

  25. Bagad, Y. M., Umarkar, A. R., Tatiya, A. U., & Surana, S. J. (2011). Journal of Pharmacy Research, 4, 1326–1132.

    Google Scholar 

  26. Ko, J. Y., Lee, J. H., Samarakoon, K., Kim, J. S., & Jeon, Y. J. (2013). Purification and determination of two novel antioxidant peptides from flounder fish (Paralichthysolivaceus) using proteases. Food and Chemical Toxicology, 52, 113–120.

    Article  CAS  Google Scholar 

  27. Tsune, I., Ikejima, K., & Hirose, M. (2003). Dietary glycine prevents chemical-induced experimental colitis in the rat. Gastroenterology, 125, 775–785.

    Article  CAS  Google Scholar 

  28. Kim, C. J., Kovacs-Nolan, J. A., & Yang, C. (2010). L-tryptophan exhibits therapeutic function in a porcine model of dextran sodium sulphate (DSS)-induced colitis. Journal of Nutritional Biochemistry, 21, 468–475.

    Article  CAS  Google Scholar 

  29. Klompong, V., Benjakul, S., Kantachote, D., & Shahidi, F. (2007). Antioxidative activity and functional properties of proteins hydrolysate of yellow stripe trevally (Selaroides leptolepis) as influenced by the degree of hydrolysis and enzyme type. Food Chemistry, 102, 1317–1327.

    Article  CAS  Google Scholar 

  30. Hasegawa, S., Ichiyama, T., Sonaka, I., Ohsaki, A., Okada, S., Wakiguchi, H., et al. (2011). Cysteine, histidine and glycine exhibit anti-inflammatory effects in human coronary arterial endothelial cells. Clinical and Experimental Immunology, 167, 269–274.

    Article  Google Scholar 

  31. Roberts, P. R., Burney, J. D., Black, K. W., & Zaloga, G. P. (1999). Effect of chain length on absorption of biologically active peptides from the gastrointestinal tract. Digestion, 60, 332–337.

    Article  CAS  Google Scholar 

  32. Millán-Linares, M. C., Bermúdez, B., Yust, M. M., Millán, F., & Pedroche, J. (2014). Anti-inflammatory activity of lupine (Lupinus angustifolius L.) protein hydrolysates in THP-1-derived macrophages. Journal of Functional Foods, 8, 224–233.

    Article  Google Scholar 

  33. Surh, Y. J., Chun, K. S., Cha, H. H., Han, S. S., Keum, Y. S., Park, K. K., et al. (2001). Molecular mechanisms underlying chemopreventive activities of anti-inflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutation Research, Fundamental and Molecular Mechanisms of Mutagenesis, 480, 243–268.

    Article  Google Scholar 

  34. Ahn, C. B., Je, J. Y., & Cho, Y. S. (2012). Antioxidant and anti-inflammatory peptide fraction from salmon byproduct protein hydrolysates by peptic hydrolysis. Food Research International, 49, 92–98.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We extend our gratitude to the management, SRM University, for providing the facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rasool Abdul Nazeer.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joshi, I., Sudhakar, S. & Nazeer, R.A. Anti-inflammatory Properties of Bioactive Peptide Derived from Gastropod Influenced by Enzymatic Hydrolysis. Appl Biochem Biotechnol 180, 1128–1140 (2016). https://doi.org/10.1007/s12010-016-2156-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2156-y

Keywords

Navigation