Skip to main content
Log in

Simultaneous Biosynthesis of Polyhydroxyalkanoates and Extracellular Polymeric Substance (EPS) from Crude Glycerol from Biodiesel Production by Different Bacterial Strains

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Simultaneous synthesis of polyhydroxyalkanoates (PHAs) and polyglutamic acid (PGA) was investigated in cultures of Cupriavidus necator IPT 026, C. necator IPT 027, C. necator IPT 029, and Bacillus megaterium INCQS 425 strains in a medium containing 2.0 % sucrose or crude glycerol from biodiesel (CGB), in an orbital shaker (35 °C, 180 rpm, 72 h). All the strains tested simultaneously produced PHA and PGA in a medium containing CGB. The C. necator IPT026 culture provided higher molecular mass PHA and PGA (1128.55 and 835.56 kDa, respectively). B. megaterium INCQS 425 promoted PGA production (1.90 g L−1) with higher crystalline melting temperature (84.04 °C) and higher initial decomposition temperature (247.10 °C). Furthermore, the latter culture promoted the production of medium- and long-chain PHA (0.78 g L−1) with high crystalline melting temperatures (∼170 °C) and high initial decomposition temperature (307.53 °C) and low degree of crystallinity (20.2 %). These characteristics render these PHAs more appropriate and suitable for processes that require high temperatures, such as extrusion, increasing the possibility of industrial applications, especially in the packaging sector.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Passanha, P., Esteves, S. R., Kedia, G., Dinsdale, R. M., & Guwy, A. J. (2013). Increasing polyhydroxyalkanoate (PHA) yields from Cupriavidus necator by using filtered digestate liquors. Bioresource Technology, 147, 345–352.

    Article  CAS  Google Scholar 

  2. Campos, M. I., Figueiredo, T. V. B., Sousa, L. S., & Druzian, J. I. (2014). The influence of crude glycerin and nitrogen concentrations on the production of PHA by Cupriavidus necator using a response surface methodology and its characterizations. Industrial Crops and Products, 52, 338–346.

    Article  CAS  Google Scholar 

  3. Hong, K., Chen, G. Q., Yu, P. H. F., Zhang, G., Lui, Y., & Chua, H. (2000). Effect of C∶N molar ratio on monomer composition of polyhydroxyalkanoates produced by Pseudomonas mendocina 0806 and Pseudomonas pseudoalkaligenus YS1. Applied Biochemistry and Biotechnology, 84, 971–980.

    Article  Google Scholar 

  4. Vargas, A., Montanõ, L., & Amaya, R. (2014). Enhanced polyhydroxyalkanoate production from organic wastes via process control. Bioresource Technology, 156, 248–255.

    Article  CAS  Google Scholar 

  5. Antunes, A., Taborda, M., Huber, M., Moissl, C., Nobre, M. F., & Da Costa, M. F. (2008). Halorhabdus tiamatea sp. nov., a non-pigmented, extremely halophilic archaeon from a deep-sea, hypersaline anoxic basin of the Red Sea, and emended description of the genus Halorhabdus. International Journal of Systematic and Evolutionary Microbiology, 58, 215–220.

    Article  CAS  Google Scholar 

  6. Koller, M., Chiellini, E., & Braunegg, G. (2015). Study on the production and re-use of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) and extracellular polysaccharide by the Archaeon Haloferax mediterranei strain DSM 1411. Chemical and Biochemical Engineering Quarterly, 29, 87–98.

    Article  CAS  Google Scholar 

  7. Di, L., Ma, W., Jin, Z., Wang, Y., Huang, Q., & Cai, P. (2016). Interactions of EPS with soil minerals: a combination study by ITC and CLSM. Colloids and Surfaces, B: Biointerfaces, 138, 10–16.

    Article  Google Scholar 

  8. Adav, S. S., & Lee, D. J. (2011). Characterization of extracellular polymeric substances (EPS) from phenol degrading aerobic granules. Journal of the Taiwan Institute of Chemical Engineers, 42(4), 645–651.

    Article  CAS  Google Scholar 

  9. Poli, A., Donato, P. D., Abbamondi, G. R., & Nicolaus, B. (2011). Synthesis, production, and biotechnological applications of exopolysaccharides and polyhydroxyalkanoates by Archaea. Archaea, 2011, 1–13.

    Article  Google Scholar 

  10. Poli, A., Kazak, H., Gürleyendag, B., Tommonaro, G., Pieretti, G., Öner, E. T., et al. (2009). High level synthesis of Levan by a novel Halomonas species growing on defined media. Carbohydrate Polymers, 78(4), 651–657.

    Article  CAS  Google Scholar 

  11. Gou, W., Feng, J., Geng, W., Song, C., Wang, Y., Chen, N., et al. (2012). Augmented production of alginate oligosaccharides by the Pseudomonas mendocina NK-01 mutant. Carbohydrate Research, 352, 109–116.

    Article  Google Scholar 

  12. Ashiuchi, M. (2013). Microbial production and chemical transformation of poly-γ-glutamate. Microbial Biotechnology, 6(6), 664–674.

    CAS  Google Scholar 

  13. Jia, Y., Zhu, J., Chen, X., Tang, D., Su, D., Yao, W., et al. (2013). Metabolic engineering of Bacillus subtilis for the efficient biosynthesis of uniform hyaluronic acid with controlled molecular weights. Bioresource Technology, 132, 427–431.

    Article  CAS  Google Scholar 

  14. Zeng, W., Chen, G., Zhang, Y., Wu, K., & Liang, Z. (2012). Studies on the UV spectrum of poly(γ-glutamic acid) based on development of a simple quantitative method. International Journal of Biological Macromolecules, 51, 83–90.

    Article  CAS  Google Scholar 

  15. Ienczak, J. L., Schmidt, M., Quines, L. K., Zanfonato, K., da Cruz Pradella, J. G., Schmidell, W., et al. (2016). Poly(3-hydroxybutyrate) production in repeated fed-batch with cell recycle using a medium with low carbon source concentration. Applied Biochemistry and Biotechnology, 178, 408–417.

    Article  CAS  Google Scholar 

  16. Anand, P., & Saxena, R. K. (2011). A comparative study of solvent-assisted pretreatment of biodiesel derived crude glycerol on growth and 1,3-propanediol production from Citrobacter freundii. New Biotechnology, 29, 199–205.

    Article  Google Scholar 

  17. Aragão, G. M. F., Lindley, N. D., Uribelarrea, J. L., & Pareilleux, A. (1996). Maintaining a controlled residual growth capacity increases the production of polyhydroxyalkanoate copolymers by Alcaligenes eutrophus. Biotechnology Letters, 18, 937–942.

    Article  Google Scholar 

  18. Ashiuchi, M., Nawa, C., Kamei, T., Song, J. J., Hong, S. P., Sung, M. H., et al. (2001). Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. European Journal of Biochemistry, 268(20), 5321–5328.

    Article  CAS  Google Scholar 

  19. Wang, B., Sharma-Shivappa, R. R., Olson, J. W., & Khan, S. A. (2013). Production of polyhydroxybutyrate (PHB) by Alcaligenes latus using sugar beet juice. Industrial Crops and Products, 43, 802–811.

    Article  CAS  Google Scholar 

  20. Braunegg, G., Lefebvre, G., & Genser, K. F. (1978). A rapid gas chromatographic method for determination of poly-β-hydroxybutyric acid in microbial biomass. European Journal of Applied Microbiology, 6, 29–37.

    Article  CAS  Google Scholar 

  21. Brandl, H., Gross, R. A., Lenz, R. W., & Fuller, R. C. (1988). Pseudomonas oleovorans as a source of poly(beta-hydroxyalkanoates) for potential applications as biodegradable polyesters. Applied and Environmental Microbiology, 54(8), 1977–1982.

    CAS  Google Scholar 

  22. Ribeiro, P. L. L., Silva, A. C. M. S., Filho, J. A. M., & Druzian, J. I. (2015). Impact of different by-products from the biodiesel industry and bacterial strains on the production, composition, and properties of novel polyhydroxyalkanoates containing achiral building blocks. Industrial Crops and Products, 69, 212–223.

    Article  CAS  Google Scholar 

  23. Miesiac, I., Rogalinski, A., & Jozwiak, P. (2013). Transesterification of triglycerides with ethyl acetate. Fuel, 105, 169–175.

    Article  CAS  Google Scholar 

  24. Thompson, J. C., & He, B. B. (2006). Characterization of crude glycerol from biodiesel production from multiple feedstocks. Applied Engineering in Agriculture, 22, 261–265.

    Article  Google Scholar 

  25. Srivastava, S. K., & Tripathi, A. D. (2013). Effect of saturated and unsaturated fatty acid supplementation on bio-plastic production under submerged fermentation. 3 Biotechnology, 3, 389–397.

    Google Scholar 

  26. Chen, G. Q., Zhang, G., & Lee, S. Y. (2001). Industrial scale production of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate). Applied Microbiology and Biotechnology, 57, 50–55.

    Article  CAS  Google Scholar 

  27. Marangoni, C., Furigo, A. J. R., & de Aragão, G. M. F. (2000). Oleic acid improves poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Ralstonia eutropha in inverted sugar and propionic acid. Biotechnology Letters, 22, 1635–1638.

    Article  CAS  Google Scholar 

  28. Bolla, K., Hima, S. V. S. S. L., Bindu, N., Samatha, B., & Singara, M. A. C. (2011). Effect of plant oils, surfactants and organic acids on the production of mycelial biomass and exopolysaccharides of Trametes spp. Journal of Agricultural Technology, 7, 957–965.

    Google Scholar 

  29. Gustavo, G. F., & Regina, V. A. (2006). Use of vegetable oils as substrates for medium-chain-length polyhydroxyalkanoates production by recombinant Escherichia coli. Biotechnology, 5(3), 277–279.

    Article  Google Scholar 

  30. Ibrahim, M. H. A., & Steinbüchel, A. (2009). Poly(3-hydroxybutyrate) production from glycerol by Zobellella denitrificans MW1 via high-cell-density fed-batch fermentation and simplified solvent extraction. Applied and Environmental Microbiology, 75(19), 6222–6231.

    Article  CAS  Google Scholar 

  31. Huang, J., Du, Y., Xu, G., Zhang, H., Zhu, F., Huang, L., et al. (2011). High yield and cost-effective production of poly(γ-glutamic acid) with Bacillus subtilis. Engineering in Life Sciences, 11(3), 291–297.

    Article  CAS  Google Scholar 

  32. Chen, H. J., Tsai, T. K., Pan, S. C., Lin, J. S., Tseng, C. L., & Shaw, G. C. (2010). The master transcription factor Spo0A is required for poly(3-hydroxybutyrate) (PHB) accumulation and expression of genes involved in PHB biosynthesis in Bacillus thuringiensis. Microbiol. Lett., 304, 74–81.

    Article  CAS  Google Scholar 

  33. Da Silva, S. B., Cantarelli, V. V., & Ayub, M. A. Z. (2014). Production and optimization of poly-γ-glutamic acid by Bacillus subtilis BL53 isolated from the Amazonian environment. Bioprocess and Biosystems Engineering, 3(37), 469–479.

    Article  Google Scholar 

  34. Tang, B., Xu, H., Xu, Z., Xu, C., Xu, Z., Lei, P., et al. (2015). Conversion of agroindustrial residues for high poly(γ-glutamic acid) production by Bacillus subtilis NX-2 via solid-state fermentation. Bioresource Technology, 181, 351–354.

    Article  CAS  Google Scholar 

  35. Gobi, K., & Vadivelu, V. M. (2015). Polyhydroxyalkanoate recovery and effect of in situ extracellular polymeric substances removal from aerobic granules. Bioresource Technology, 189, 169–176.

    Article  CAS  Google Scholar 

  36. Tian, S. J., Lai, W. J., Zheng, Z., Wang, H. X., & Chen, G. Q. (2005). Effect of over-expression of phasin gene from Aeromonas hydrophila on biosynthesis of copolyesters of 3-hydroxybutyrate and 3-hydroxyhexanoate. FEMS Microbiology Letters, 244, 19–25.

    Article  CAS  Google Scholar 

  37. Dionisi, D., Majone, M., Miccheli, A., Puccetti, C., & Sinisi, C. (2004). Glutamic acid removal and PHB storage in the activated sludge process under dynamic conditions. Biotechnology and Bioengineering, 86(7), 842–851.

    Article  CAS  Google Scholar 

  38. Tanaka, K., Ishizaki, A., Kanamaru, T., & Kawano, T. (1994). Production of poly(D-3-hydroxybutyrate) from CO(2), H(2), and O(2) by high cell density autotrophic cultivation of Alcaligenes eutrophus. Biotechnology and Bioengineering, 45(3), 268–275.

    Article  Google Scholar 

  39. Madden, L. A., Anderson, A. J., Shah, D. T., & Asrar, J. (1999). Chain termination in polyhydroxyalkanoate synthesis: involvement of exogenous hydroxy-compounds as chain transfer agents. International Journal of Biological Macromolecules, 25, 43–53.

    Article  CAS  Google Scholar 

  40. Zhu, C., Nomura, C. T., Perrotta, J. A., Stipanovic, A. J., & Nakas, J. P. (2010). Production and characterization of poly-3-hydroxybutyrate from biodiesel-glycerol by Burkholderia cepacia, ATCC 17759. Biotechnology Progress, 26, 424–430.

    CAS  Google Scholar 

  41. Kawata, Y., & Aiba, S. (2010). Poly(3-hydroxybutyrate) production and isolated Halomonas sp. KM-1 using waste glycerol. Bioscience, Biotechnology, and Biochemistry, 74, 175–177.

    Article  CAS  Google Scholar 

  42. Shih, I. L., & Van, Y. T. (2001). The production of poly-(gamma-glutamic acid) from microorganisms and its various applications. Bioresource Technology, 79(3), 207–225.

    Article  CAS  Google Scholar 

  43. Candela, T., & Fouet, A. (2006). Poly-gamma-glutamate in bacteria. Molecular Microbiology, 60(5), 1091–1098.

    Article  CAS  Google Scholar 

  44. Shimizu, K., Nakamura, H., & Ashiuchi, M. (2007). Salt-inducible bionylon polymer from Bacillus megaterium. Applied and Environmental Microbiology, 73(7), 2378–2379.

    Article  CAS  Google Scholar 

  45. Rohini, D., Phadnis, S., & Rawal, S. K. (2006). Synthesis and characterization of poly-β-hydroxybutyrate from Bacillus thuringiensis R1. Indian Journal of Biotechnology, 5, 276–283.

    CAS  Google Scholar 

  46. Galego, N., Rozsa, C., Sánchez, R., Fung, J., Vásquez, A., & Tomás, J. S. (2000). Characterization and application of poly(beta-hydroxyalkanoates) family as composite biomaterials. Polymer Testing, 19(5), 485–492.

    Article  CAS  Google Scholar 

  47. Castilho, A. E. W., Dos Santos, H. F., Jorio, A., De Mirando, A. M., Armond, R. A. S. Z., Achete, C. A., et al. (2012). Theoretical and experimental study of infrared spectra of fatty acid esters present in soybean biodiesel. Quim. Nova, 9(35), 1752–1757.

    Google Scholar 

  48. Ho, G. H., Ho, T. I., Hsieh, K. H., Su, Y. C., Lin, P. Y., Yang, J., et al. (2006). γ-Polyglutamic acid produced by Bacillus subtilis: structural characteristics, chemical properties and biological functionalities. Journal of the Chinese Chemical Society, 53(6), 1363–1384.

    Article  CAS  Google Scholar 

  49. Dobroth, Z. T., Hu, S., Coats, E. R., & Mcdonald, A. G. (2011). Polyhydroxybutyrate synthesis on biodiesel wastewater using mixed microbial consortia. Bioresource Technology, 102(3), 3352–3359.

    Article  CAS  Google Scholar 

  50. García, I. L., López, J. A., Dorado, M. P., Kopsahelis, N., Alexandri, M., Papanikoulaou, S., et al. (2013). Evaluation of by-products from the biodiesel industry as fermentation feedstock for poly(3-hydroxybutyrate-co-3-hydroxyvalerate) production by Cupriavidus necator. Bioresource Technology, 130, 16–22.

    Article  Google Scholar 

  51. Figueiredo, T. V. B., Campos, M. I., Sousa, L. S., da Silva, J. R., & Druzian, J. I. (2014). Production and characterization of polyhydroxyalkanoates obtained by fermentation of crude glycerin from biodiesel. Quim. Nova, 7(37), 1111–1117.

    Google Scholar 

  52. Serafim, L. S., Lemos, P. C., Albuquerque, M. G., & Reis, M. A. (2008). Strategies for PHA production by mixed cultures and renewable waste materials. Applied Microbiology and Biotechnology, 81(4), 615–628.

    Article  CAS  Google Scholar 

  53. Gunaratne, L. M. W. K., & Shanks, R. A. (2005). Multiple melting behaviour of poly(3-hydroxybutyrate-co-hydroxyvalerate) using step-scan DSC. European Polymer Journal, 41(12), 2980–2988.

    Article  CAS  Google Scholar 

  54. Soares, J. P., Santos, J. E., Chierice, G. O., & Cavaleiro, E. T. G. (2004). Thermal behavior of alginic acid and its sodium salt. Eclét. Quím., 29(2), 53–56.

    Article  Google Scholar 

  55. Dalal, J., Sarma, P. M., Mandal, A. K., & Lal, B. (2013). Response surface optimization of poly(3-hydroxyalkanoic acid) production using oleic acid as an alternative carbon source by Pseudomonas aeruginosa. Biomass and Bioenergy, 24, 67–76.

    Article  Google Scholar 

  56. Tortajada, M., Silva, L. F., & Prieto, M. A. (2013). Second-generation functionalized medium-chain-length polyhydroxyalkanoates: the gateway to high-value bioplastic applications. International Microbiology, 16, 1–15.

    CAS  Google Scholar 

  57. Haywood, G. W., Anderson, A. J., & Dawes, E. A. (1989). A survey of the accumulation of novel polyhydroxyalkanoates by bacteria. Biotechnology Letters, 11, 471–476.

    Article  CAS  Google Scholar 

  58. Laycock, B., Halley, P., Pratt, S., Werkerc, A., & Lant, P. (2012). The chemomechanical properties of microbial polyhydroxyalkanoates. Progress in Polymer Science, 38(3), 536–583.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denilson de Jesus Assis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Jesus Assis, D., Gomes, G.V.P., da Cunha Pascoal, D.R. et al. Simultaneous Biosynthesis of Polyhydroxyalkanoates and Extracellular Polymeric Substance (EPS) from Crude Glycerol from Biodiesel Production by Different Bacterial Strains. Appl Biochem Biotechnol 180, 1110–1127 (2016). https://doi.org/10.1007/s12010-016-2155-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2155-z

Keywords

Navigation