Skip to main content

Advertisement

Log in

Elicitation of Medicinally Important Antioxidant Secondary Metabolites with Silver and Gold Nanoparticles in Callus Cultures of Prunella vulgaris L.

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Prunella vulgaris L. (P. vulgaris) is an important medicinal plant with a wide range of antiviral properties. Traditionally, it is known as self-heal because of its faster effects on wound healing. It is commonly known as a natural antiseptic due to the presence of various polyphenols. There is lack of research efforts on its propagation and production of bioactive compounds under field and in vitro conditions. In this study, the effects of different ratios (1:2, 1:3, 2:1, and 3:1) of silver (Ag) and gold (Au) nanoparticles (NPs) alone or in combination with naphthalene acetic acid (NAA) were investigated for callus culture development and production of secondary metabolites. The Ag (30 μg l−1), AgAu (1:2), and AgAu (2:1) NPs in combination with NAA (2.0 mg l−1) enhanced callus proliferation (100 %) as compared to the control (95 %). Among the different NPs tested, AuNPs with or without NAA produced higher biomass in log phases (35–42 days) of growth kinetics. Furthermore, AgAu (1:3) and AuNPs alone enhanced total protein content (855 μg-BSAE/mg-fresh weight (FW)), superoxide dismutase (0.54 nM/min/mg-FW), and peroxidase (0.39 nM/min/mg-FW) enzymes in callus cultures. The AgAuNPs (1:3) in combination with NAA induced maximum accumulation of phenolics (TPC 9.57 mg/g-dry weight (DW)) and flavonoid (6.71 mg/g-DW) content. Moreover, AgAuNPs (3:1) without NAA enhanced antioxidant activity (87.85 %). This study provides the first evidence of NP effect on callus culture development and production of natural antioxidants in P. vulgaris.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Chen, Y., Yu, M., Zhu, Z., Zhang, L., & Guo, Q. (2013). Optimisation of potassium chloride nutrition for proper growth, physiological development and bioactive component production in Prunella vulgaris L. PLoS One, 8, 1–7.

    CAS  Google Scholar 

  2. Golembiovska, O. I., & Tsurkan, A. A. (2013). Anthocyanins profiling of Prunella vulgaris L. grown in Ukraine. Pharma Innovation Journal, 2, 42–48.

    CAS  Google Scholar 

  3. Fazal, H., Abbasi, B. H., & Ahmad, N. (2014). Optimization of adventitious root culture for production of biomass and secondary metabolites in Prunella vulgaris L. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-014-1190-x.

    Google Scholar 

  4. Fazal, H., Abbasi, B. H., Ahmad, N., Ali, M., & Ali, S. (2015). Sucrose induced osmotic stress and photoperiod regimes enhanced the biomass and production of antioxidant secondary metabolites in shake-flask suspension cultures of Prunella vulgaris L. Plant Cell, Tissue and Organ Culture. doi:10.1007/s11240-015-0915-z.

    Google Scholar 

  5. Shinwari, Z.K., Watanabe, T., Rehman, M., & Youshikawa, T. (2006). A pictorial guide to medicinal [lants of Pakistan. Kohat University of Science & Technology Pakistan pp 336.

  6. Chen, C. Y., Wu, G., & Zhang, M. Z. (2009). The effects and mechanism of action of Prunella vulgaris L. extract on Jurkat human T lymphoma cell proliferation. Chinese-German Journal of Clinical Oncology, 8, 426–429.

    Article  CAS  Google Scholar 

  7. Liu, G. M., Jia, X. B., Wang, H. B., Feng, L., & Chen, Y. (2009). Review about current status of cancer prevention for the chemical composition or composition and function mechanism of Prunella vulgaris. Journal of Chinese Medicine and Materials, 3, 1920–1926.

    Google Scholar 

  8. Rasool, R., Kamili, A. N., Ganai, B. A., & Akbar, S. (2009). Effect of BAP and NAA on shoot regeneration in Prunella vulgaris. Journal of Natural Sciences and Mathematics, 3, 21–26.

    Google Scholar 

  9. Huang, R., Zhao, M., Yang, X., Huang, J., Yang, Y., Chen, B., Tan, J., Huang, J., Li, Z., Lv, Y., & Ji, G. (2013). Effects of Prunella vulgaris on the mice immune function. PLoS One, 8, 1–8.

    Article  CAS  Google Scholar 

  10. Ali, M., Abbasi, B. H., & Haq, I. U. (2013). Production of commercially important secondary metabolites and antioxidant activity in cell suspension cultures of Artemisia absinthium L. Industrial Crops and Products, 49, 400–406.

    Article  CAS  Google Scholar 

  11. Shoji, H., Yamashiro, Y., & Koletzko, B. (2008). Oxidative stress and antioxidants in the perinatal period. In: Oxidative Stress and Inflammatory Mechanisms in Obesity, Diabetes, and the Metabolic Syndrome. Boca Raton: L. Taylor & Francis Group 72.

  12. Valko, M., Leibfritz, D., Moncol, J., Cronin, M. T. D., Mazur, M., & Telser, J. (2006). Free radicals and antioxidants in normal physiological functions and human disease. International Journal of Biochemistry and Cell Biology, 7, 45–78.

    Google Scholar 

  13. Racchi, M. L., Bagnoli, F., Balla, I., & Daut, S. (2001). Differential activity of catalase and superoxide dismutase in seedlings and in vitro micro propagated oak (Quercus robur L.). Plant Cell Reports, 20, 169–174.

    Article  CAS  Google Scholar 

  14. Gupta, S. D., & Datta, S. (2003). Antioxidant enzyme activities during in vitro morphogenesis of gladiolus and the effect of application of antioxidant on plant regeneration. Biologiae Plantarum, 47, 179–183.

    Article  CAS  Google Scholar 

  15. Manohari, J. S. S. D., Indra, M., & Muthuchelian, K. (2011). Enzymatic activities of mother plant and tissue cultured plants of Cassia siamea (Fabaceae). Journal of Bioscience Research, 2, 183–188.

    Google Scholar 

  16. Joo, S. S., Kim, Y., & Lee, D. I. (2010). Antimicrobial and antioxidant properties of secondary metabolites from white rose flower. Plant Pathology Journal, 26, 57–62.

    Article  CAS  Google Scholar 

  17. Amid, A., Johan, N. N., Jamal, P., & Zain, W. N. W. M. (2011). Observation of antioxidant activity of leaves, callus and suspension culture of Justicia gendarusa. African Journal of Biotechnology, 10, 18653–18656.

    CAS  Google Scholar 

  18. Lin, D., & Xing, B. (2007). Phytotoxicity of nanoparticles: inhibition of seed germination and root growth. Environmental Pollution, 150, 243–250.

    Article  CAS  Google Scholar 

  19. Ma, X., Geiser-Lee, J., Deng, Y., & Kolmakov, A. (2010). Interactions between engineered nanoparticles (ENPs) and plants: phytotoxicity, uptake and accumulation. Science of Total Environment, 408, 3053–3061.

    Article  CAS  Google Scholar 

  20. Larue, C., Laurette, J., Herlin-Boime, N., Khodja, H., Fayard, B., Flank, A. M., Brisset, F., & Carriere, M. (2012). Accumulation, translocation and impact of TiO2 nanoparticles in wheat (Triticum aestivum spp.): influence of diameter and crystal phase. Science of Total Environment, 431, 197–208.

    Article  CAS  Google Scholar 

  21. Lu, C. M., Zhang, C. Y., Wen, J. Q., Wu, G. R., & Tao, M. X. (2002). Research of the effect of nanometer materials on germination and growth enhancement of Glycine max and its mechanism. Soybean Science, 21, 168–172.

    CAS  Google Scholar 

  22. Priyadarshini, S., Deepesh, B., Zaidi, M. G. H., Pardha-saradhi, P., Khanna, P. K., & Arora, S. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167, 2225–2233.

    Article  Google Scholar 

  23. Singh, D., Kumar, S., Singh, S. C., Bihari, L., & Singh, N. B. (2012). Applications of liquid assisted pulsed laser ablation synthesized TiO2 nanoparticles on germination, growth and biochemical parameters of Brassica oleracea var Capitata. Science of Advance Materials, 4, 522–531.

    Article  CAS  Google Scholar 

  24. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologiae Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  25. Rahman, L. U., Shah, A., Khan, S. B., Asiri, A. M., Hussain, H., Han, C., Qureshi, R., Ashiq, M. N., Zia, M. A., Ishaq, M., & Kraatz, H.-B. (2015). Synthesis, characterization, and application of Au–Ag alloy nanoparticles for the sensing of an environmental toxin, pyrene. Journal of Applied Electrochemistry. doi:10.1007/s10800-015-0807-2.

    Google Scholar 

  26. Nayyar, H., & Gupta, D. (2006). Differential sensitivity of C3 and C4 plants to water deficit stress: association with oxidative stress and antioxidants. Environmental and Experimental Botany, 58, 106–113.

    Article  CAS  Google Scholar 

  27. Lagrimini, L. M. (1991). Wound-induced deposition of polyphenols in transgenic plants over expressing peroxidase. Plant Physiology, 96, 577–583.

    Article  CAS  Google Scholar 

  28. Ahmad, N., Abbasi, B. H., Fazal, H., Khan, M. A., & Afridi, M. S. (2014). Effects of reverse photoperiod on in vitro regeneration and piperine production in Piper nigrum. Comptes Rendus Biologies, 337, 19–28.

    Article  Google Scholar 

  29. Giri, L., Dhyani, P., Rawat, S., Bhatt, I. D., Nandi, S. K., Rawal, R. S., & Pande, V. (2012). In vitro production of phenolic compounds and antioxidant activity in callus suspension cultures of Habenaria edgeworthii: a rare Himalayan medicinal orchid. Industrial Crops and Products, 39, 1–6.

    Article  CAS  Google Scholar 

  30. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  31. Ahmad, N., Fazal, H., Abbasi, B. H., Rashid, M., Mahmood, T., & Fatma, N. (2010). Efficient regeneration and antioxidant potential in regenerated-tissues of Piper nigrum L. Plant Cell, Tissue and Organ Culture, 102, 129–134.

    Article  CAS  Google Scholar 

  32. Ahmad, N., Abbas, B. H., Fazal, H., & Rahman, U. R. (2013). Piper nigrum L.: micropropagation, antioxidative enzyme activities and chromatographic fingerprint analysis for quality control. Applied Biochemistry and Biotechnology, 169, 2004–2015.

    Article  CAS  Google Scholar 

  33. Ali, M., & Abbasi, B. H. (2014). Thidiazuron-induced changes in biomass parameters, phenolics content and antioxidant activity in callus cultures of Artemisia absinthium L. Applied Biochemistry and Biotechnology, 172, 2363–2376.

    Article  CAS  Google Scholar 

  34. Tariq, U., Ali, M., & Abbasi, B. H. (2014). Morphogenic and biochemical variations under different spectral lights in callus cultures of Artemisia absinthium L. Journal of Photochemistry and Photobiology, B: Biology, 130, 264–271.

    Article  CAS  Google Scholar 

  35. Vannini, C., Domingo, G., Onelli, E., Prinsi, B., Marsoni, M., Espen, L., & Bracale, M. (2013). Morphological and proteomic responses of Eruca sativa exposed to silver nanoparticles or silver nitrate. PLoS One, 8, 68752.

    Article  Google Scholar 

  36. El-Temsah, Y. S., & Joner, E. J. (2010). Impact of Fe and Ag nanoparticles on seed germination and differences in bioavailability during exposure in aqueous suspension and soil. Environmental Toxicology, 27, 42–49.

    Article  Google Scholar 

  37. Sharma, P., Bhatt, D., Zaidi, M. G., Saradhi, P. P., & Khanna, P. K. (2012). Silver nanoparticle-mediated enhancement in growth and antioxidant status of Brassica juncea. Applied Biochemistry and Biotechnology, 167, 2225–2233.

    Article  CAS  Google Scholar 

  38. Salama, H. M. H. (2012). Effects of silver nanoparticles in some crop plants, common bean (Phaseolus vulgaris L.) and corn (Zea mays L.). International Research Journal of Biotechnology, 3, 190–197.

    Google Scholar 

  39. Srinivasan, K. (2007). Black pepper and its pungent principle-piperine: a review of diverse physiological effects. Critical Reviews in Food Science and Nutrition, 47, 735–748.

    Article  CAS  Google Scholar 

  40. Abbasi, B. H., Khan, M., Guo, B., Bokhari, S. A., & Khan, M. A. (2011). Efficient regeneration and antioxidative enzyme activities in Brassica rapa var. turnip. Plant Cell, Tissue and Organ Culture, 105, 337–344.

    Article  CAS  Google Scholar 

  41. Abbasi, B. H., Saxena, P. K., Murch, S. J., & Liu, C. Z. (2007). Echinacea biotechnology: xhallenges and opportunities. In Vitro Cellular and Developmental Biology-Plant, 43, 481–492.

    Article  CAS  Google Scholar 

  42. Kumar, G. N. M., & Knowles, N. R. (1993). Changes in lipid peroxidation and lipolytic and free radical scavenging enzyme activities during aging and sprouting of potato (Solanum tuberosum) seed-tubers. Plant Physiology, 102, 105–124.

    Article  Google Scholar 

  43. Franck, T., Kevers, C., & Gasper, T. (1995). Protective enzymatic systems against activated oxygen species compared in normal and hyperhydric shoots of Prunus avium L. raised in vitro. Plant Growth Regulation, 16, 253–256.

    Article  CAS  Google Scholar 

  44. Meratan, A. A., Gaffari, S. M., & Nikram, V. (2009). In vitro organogenesis and antioxidant enzymes activity in Acanthophyllum sordidum. Biologiae Plantarum, 53, 5–10.

    Article  CAS  Google Scholar 

  45. Gasper, I. (1995). The concept of cancer in in vitro plant cultures and the implication of habituation to hormones and hyperhydricity. Plant Tissue Culture Biotechnology, 1, 126–136.

    Google Scholar 

  46. Thakar, J., & Bhargava, S. (1999). Seasonal variation in antioxidant enzymes and the sprouting response of Gmelia arborea nodal sectors cultured in vitro. Plant Cell, Tissue and Organ Culture, 59, 81–187.

    Article  Google Scholar 

  47. Zavaleta-Mancera, H. A., Lopez-Delgado, H., Loza-Tavera, H., Mora-Herrera, M., Trevilla-Garcia, C., Vargas-Suares, M., & Ougham, H. (2007). Cytokinin promotes catalase and ascorbate peroxidases activities and preserves the chloroplast integrity during dark-senescence. Journal of Plant Physiology, 164, 1572–1582.

    Article  CAS  Google Scholar 

  48. Sreelatha, S., & Padma, P. R. (2009). Antioxidant activity and total phenolic content of Moringa oleifera leaves in two stages of maturity. Plant Food for Human Nutrition, 64, 303–311.

    Article  CAS  Google Scholar 

  49. Hong, Y., Lin, S., Jiang, Y., & Ashraf, M. (2008). Variation in contents of total phenolics and flavonoids and antioxidant activities in the leaves of 11 Eriobotrya species. Plant Food for Human Nutrition, 63, 200–204.

    Article  CAS  Google Scholar 

  50. Kosar, M., Goger, F., & Baser, K. H. C. (2011). In vitro antioxidant properties and phenolic composition of Salvia halophila Hedge from Turkey. Food Chemistry, 129, 374–379.

    Article  CAS  Google Scholar 

  51. Parsaeimehr, A., Sargsyan, E., & Javidnia, K. (2010). A comparative study of the antibacterial, antifungal and antioxidant activity and total content of phenolic compounds of cell cultures and wild plants of three endemic species of Ephedra. Molecules, 15, 1668–1678.

    Article  CAS  Google Scholar 

  52. Costa, P., Gonçalves, S., Valentao, P., Andrade, P. B., Coelho, N., & Romano, A. (2012). Thymus lotocephalus wild plants and in vitro cultures produce different profiles of phenolic compounds with antioxidant activity. Food Chemistry, 135, 1253–1260.

    Article  CAS  Google Scholar 

  53. Hemm, M. R., Rider, S. D., Ogas, J., Murry, D. J., & Chapple, C. (2004). Light induces phenylpropanoid metabolism in Arabidopsis roots. Plant Journal, 38, 765–778.

    Article  CAS  Google Scholar 

  54. Liu, C. Z., Guo, C., Wang, Y. C., & Ouyang, F. (2002). Effect of light irradiation on hairy root growth and artemisinin biosynthesis of Artemisia annua. Process Biochemistry, 38, 581–585.

    Article  CAS  Google Scholar 

  55. Naz, S., Ali, A., & Iqbal, J. (2008). Phenolic content in vitro cultures of chick pea (Cicer arietinum L.) during callogenesis. Pakistan Journal of Botany, 40, 2525–2539.

    CAS  Google Scholar 

  56. Ghasemzadeh, A., Jaafar, H. Z. E., Rahmat, A., Wahab, P. E. M., & Halim, M. R. A. (2010). Effect of different light intensities on total phenolics and flavonoids synthesis and antioxidant activities in young ginger varieties (Zingiber officinale Roscoe). International Journal of Molecular Sciences, 11, 3885–3897.

    Article  CAS  Google Scholar 

  57. Khan, M. A., Abbasi, B. H., Ahmed, N., & Ali, H. (2013). Effects of light regimes on in vitro seed germination and silymarin content in Silybum marianum. Industrial Crops and Products, 46, 105–110.

    Article  CAS  Google Scholar 

  58. Abouzid, S. F., El-Bassuon, A. A., Nasib, A., Khan, S., Qureshi, J., & Choudhary, M. I. (2010). Withaferin a production by root cultures of Withania coagulans. International Journal of Applied Research of Natural Products, 3, 23–27.

    CAS  Google Scholar 

  59. Lei, Z., Mingyu, S., & Xiao, W. (2008). Antioxidant stress is promoted by nano-anatase in spinach chloroplasts under UV-B radiation. Biological Trace Elements Research, 121, 69–79.

    Article  Google Scholar 

  60. Güllüce, M., Sökmen, M., Daferera, D., Aǧar, G., Özkan, H., Kartal, N., Polissiou, M., Sökmen, A., & Şahi̇n, F. (2003). In vitro antibacterial, antifungal, and antioxidant activities of the essential oil and methanol extracts of herbal parts and callus cultures of Satureja hortensis L. Journal of Agriculture and Food Chemistry, 51, 3958–3965.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bilal Haider Abbasi or Nisar Ahmad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazal, H., Abbasi, B.H., Ahmad, N. et al. Elicitation of Medicinally Important Antioxidant Secondary Metabolites with Silver and Gold Nanoparticles in Callus Cultures of Prunella vulgaris L.. Appl Biochem Biotechnol 180, 1076–1092 (2016). https://doi.org/10.1007/s12010-016-2153-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2153-1

Keywords

Navigation