Skip to main content
Log in

Lactobacillus plantarum WCFS1 β-Fructosidase: Evidence for an Open Funnel-Like Channel Through the Catalytic Domain with Importance for the Substrate Selectivity

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

β-Fructosidase, a glycoside hydrolase of a biotechnologically important strain, was studied for its biochemical, physicochemical, and three-dimensional structure characteristics. This enzyme was heterologously expressed in Escherichia coli as a C-terminal His-tagged protein (SacB). β-Fructosidase catalyzes the cleavage of glycoside bonds toward certain carbohydrates with β-fructofuranosyl linkages; however, SacB exhibited selectivity toward sucrose and an optimum activity at pH 6.0–6.5 and 37 °C. In such optimum enzymatic activity conditions, the SacB was commonly observed as a monodisperse protein by dynamic light scattering (DLS). As β-fructosidase belongs to glycoside hydrolase family 32 (GH32), a β-sandwich and a five-bladed β-propeller domain are typical predicted folds in its structure. Docking and molecular dynamic simulations revealed for the first time a funnel-like channel perfectly exposed in the β-propeller domain of the Lactobacillus plantarum β-fructosidase (this allows the interaction between its entire catalytic triad and substrates that are larger than sucrose). In contrast, SacB showed a closed central tunnel collaterally induced by its His-tag.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lombard, V., Ramulu, H. G., Drula, E., Coutinho, P. M., & Henrissat, B. (2014). The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Research, 42(D1), D490–D495.

    Article  CAS  Google Scholar 

  2. Nadeem, H., Rashid, M. H., Siddique, M. H., Azeem, F., Muzammil, S., Javed, M. R., Ali, M. A., Rasul, I., & Riaz, M. (2015). Microbial invertases: a review on kinetics, thermodynamics, physiochemical properties. Process Biochemistry, 50(8), 1202–1210.

    Article  CAS  Google Scholar 

  3. Awad, G. E. A., Amer, H., El-Gammal, E. W., Helmy, W. A., & Elnashar, M. M. M. (2013). Production optimization of invertase by Lactobacillus brevis Mm-6 and its immobilization on alginate beads. Carbohydrate Polymers, 93(2), 740–746.

    Article  CAS  Google Scholar 

  4. Nadeem, H., Rashid, M. H., Riaz, M., Asma, B., Javed, M. R., & Perveen, R. (2009). Invertase from hyper producer strain of Aspergillus niger: physiochemical properties, thermodynamics and active site residues heat of ionization. Protein and Peptide Letters, 16(9), 1098–1105.

    Article  CAS  Google Scholar 

  5. Andjelković, U., Milutinović-Nikolić, A., Jović-Jovičić, N., Banković, P., Bajt, T., Mojović, Z., Vujčić, Z., & Jovanović, D. (2015). Efficient stabilization of Saccharomyces cerevisiae external invertase by immobilisation on modified beidellite nanoclays. Food Chemistry, 168(1), 262–269.

    Article  Google Scholar 

  6. Diario Oficial de la Federación, Secretaría de Gobernación, México. Available from www.dof.gob.mx/nota_detalle.php?codigo=5413779&fecha=30/10/2015. Accessed 9 Feb 2016.

  7. Jedrzejczak-Krzepkowska, M., Tkaczuk, K. L., & Bielecki, S. (2011). Biosynthesis, purification and characterization of β-fructofuranosidase from Bifidobacterium longum KN29.1. Process Biochemistry, 46(10), 1963–1972.

    Article  CAS  Google Scholar 

  8. Ehrmann, M. A., Korakli, M., & Vogel, R. F. (2003). Identification of the gene for β-fructofuranosidase of Bifidobacterium lactis DSM10140T and characterization of the enzyme expressed in Escherichia coli. Current Microbiology, 46(6), 391–397.

    Article  CAS  Google Scholar 

  9. Martel, C. M., Warrilow, A. G. S., Jackson, C. J., Mullins, J. G. L., Togawa, R. C., Parker, J. E., Morris, M. S., Donnison, I. S., Kelly, D. E., & Kelly, S. L. (2010). Expression, purification and use of the soluble domain of Lactobacillus paracasei β-fructosidase to optimise production of bioethanol from grass fructans. Bioresource Technology, 101(12), 4395–4402.

    Article  CAS  Google Scholar 

  10. Chen, C., Zhou, F., Ren, J., Ai, L., Dong, Y., Wu, Z., Liu, Z., Chen, W., & Guo, B. (2014). Cloning, expression and functional validation of a β-fructofuranosidase from Lactobacillus plantarum. Process Biochemistry, 49(5), 758–767.

    Article  Google Scholar 

  11. Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H. M., Fiers, M. W. E. J., Stiekema, W., Lankhorts, R. M. K., Bron, P. A., Hoffer, S. M., Groot, M. N. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences USA, 100(4), 1990–1995.

    Article  CAS  Google Scholar 

  12. Arena, M. P., Fiocco, D., Massa, S., Capozzi, V., Russo, P., & Spano, G. (2014). Lactobacillus plantarum as a strategy for an in situ production of vitamin B2. Journal of Food and Nutritional Disorders, S1-004.

  13. Siezen, R. J., & van Hylckama Vlieg, J. E. (2011). Genomic diversity and versatility of Lactobacillus plantarum, a natural metabolic engineer. Microbial Cell Factories, 10(Suppl 1), S3.

    Article  Google Scholar 

  14. Lamontanara, A., Caggianiello, G., Orrù, L., Capozzi, V., Michelotti, V., Bayjanov, J. R., Renckens, B., van Hijum, S. A. F. T., Cattivelli, L., & Spano, G. (2015). Draft genome sequence of Lactobacillus plantarum Lp90 isolated from wine. Genome Announcements, 3(2), e00097–15.

    Article  Google Scholar 

  15. Sorger, P. K., & Pelham, H. R. B. (1987). Purification and characterization of a heat-shock element binding protein from yeast. The EMBO Journal, 6(10), 3035–3041.

    CAS  Google Scholar 

  16. Gao, J., Xu, Y.-Y., Yang, H.-M., Xu, H., Xue, F., Li, S., & Feng, X.-H. (2014). Gene cloning, expression, and characterization of an exo-inulinase from Paenibacillus polymyxa ZJ-9. Applied Biochemistry and Biotechnology, 173(6), 1419–1430.

    Article  CAS  Google Scholar 

  17. Mancilla-Margalli, N. A., & López, M. G. (2006). Water-soluble carbohydrates and fructan structure patterns from Agave and Dasylirion species. Journal of Agricultural and Food Chemistry, 54(20), 7832–7839.

    Article  CAS  Google Scholar 

  18. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426–428.

    Article  CAS  Google Scholar 

  20. Chen, C.-C., Hwang, J.-K., & Yang, J.-M. (2006). (PS)2: protein structure prediction server. Nucleic Acids Research, 34(Suppl 2), W152–W157.

    Article  CAS  Google Scholar 

  21. Chen, V. B., Arendall, W. B., III, Headd, J. J., Keedy, D. A., Immormino, R. M., Kapral, G. J., Murray, L. W., Richardson, J. S., & Richardson, D. C. (2010). MolProbity: all-atom structure validation for macromolecular crystallography. Acta Crystallographica Section D: Structural Biology, 66(1), 12–21.

    Article  CAS  Google Scholar 

  22. Hess, B., Kutzner, C., van der Spoel, D., & Lindahl, E. (2008). GROMACS 4: algorithms for highly efficient, load-balanced, and scalable molecular simulation. Journal of Chemical Theory and Computation, 4(3), 435–447.

    Article  CAS  Google Scholar 

  23. MacKerell, A. D., Jr., Feig, M., & Brooks, C. L., III. (2004). Extending the treatment of backbone energetics in protein force fields: limitations of gas-phase quantum mechanics in reproducing protein conformational distributions in molecular dynamics simulations. Journal of Computational Chemistry, 25(11), 1400–1415.

    Article  CAS  Google Scholar 

  24. Hess, B. (2008). P-LINCS: a parallel linear constraint solver for molecular simulation. Journal of Chemical Theory and Computation, 4(1), 116–122.

    Article  CAS  Google Scholar 

  25. Essmann, U., Perera, L., Berkowitz, M. L., Darden, T., Lee, H., & Pedersen, L. G. (1995). A smooth particle mesh Ewald method. The Journal of Chemical Physics, 103(19), 8577–8593.

    Article  CAS  Google Scholar 

  26. Thomsen, R., & Christensen, M. H. (2006). MolDock: a new technique for high-accuracy molecular docking. Journal of Medicinal Chemistry, 49(11), 3315–3321.

    Article  CAS  Google Scholar 

  27. Yang, J.-M., & Chen, C.-C. (2004). GEMDOCK: a generic evolutionary method for molecular docking. Proteins: Structure, Function, and Bioinformatics, 55(2), 288–304.

    Article  CAS  Google Scholar 

  28. Wavefunction, Inc. Spartan’08. Available from www.wavefun.com. Accessed 30 Dec 2015.

  29. Stephens, P. J., Devlin, F. J., Chabalowski, C. F., & Frisch, M. J. (1994). Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. The Journal of Physical Chemistry, 98(45), 11623–11627.

    Article  CAS  Google Scholar 

  30. Petersson, G. A., Tensfeldt, T. G., & Montgomery, J. A., Jr. (1991). A complete basis set model chemistry. III. The complete basis set‐quadratic configuration interaction family of methods. The Journal of Chemical Physics, 94(9), 6091–6101.

    Article  CAS  Google Scholar 

  31. Omori, T., Ueno, K., Muramatsu, K., Kikuchi, M., Onodera, S., & Shiomi, N. (2010). Characterization of recombinant β-fructofuranosidase from Bifidobacterium adolescentis G1. Chemistry Central Journal, 4(1), 9.

    Article  Google Scholar 

  32. Saulnier, D. M. A., Molenaar, D., de Vos, W. M., Gibson, G. R., & Kolida, S. (2007). Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Applied and Environmental Microbiology, 73(6), 1753–1765.

    Article  CAS  Google Scholar 

  33. McNicholas, S., Potterton, E., Wilson, K. S., & Noble, M. E. M. (2011). Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallographica Section D: Structural Biology, 67(4), 386–394.

    Article  CAS  Google Scholar 

  34. Nagem, R. A. P., Rojas, A. L., Golubev, A. M., Korneeva, O. S., Eneyskaya, E. V., Kulminskaya, A. A., Neustroev, K. K., & Polikarpov, I. (2004). Crystal structure of exo-inulinase from Aspergillus awamori: the enzyme fold and structural determinants of substrate recognition. Journal of Molecular Biology, 344(2), 471–480.

    Article  CAS  Google Scholar 

  35. Chaudhuri, I., Söding, J., & Lupas, A. N. (2008). Evolution of the β-propeller fold. Proteins: Structure, Function, and Bioinformatics, 71(2), 795–803.

    Article  CAS  Google Scholar 

  36. Chen, C. K.-M., Chan, N.-L., & Wang, A. H.-J. (2011). The many blades of the β-propeller proteins: conserved but versatile. Trends in Biochemical Sciences, 36(10), 553–561.

    Article  CAS  Google Scholar 

  37. Cuskin, F., Flint, J. E., Gloster, T. M., Morland, C., Baslé, A., Henrissat, B., Coutinho, P. M., Strazzulli, A., Solovyova, A. S., Davies, G. J., & Gilbert, H. J. (2012). How nature can exploit nonspecific catalytic and carbohydrate binding modules to create enzymatic specificity. Proceedings of the National Academy of Sciences USA, 109(51), 20889–20894.

    Article  CAS  Google Scholar 

  38. Sainz-Polo, M. A., Ramírez-Escudero, M., Lafraya, A., González, B., Marín-Navarro, J., Polaina, J., & Sanz-Aparicio, J. (2013). Three-dimensional structure of Saccharomyces invertase: role of a non-catalytic domain in oligomerization and substrate specificity. Journal of Biological Chemistry, 288(14), 9755–9766.

    Article  CAS  Google Scholar 

  39. Privalov, P. L. 1979. in Stability of proteins small globular proteins, vol 33: advances in protein chemistry (Anfinsen, C. B., Edsall, J. T., & Richards, F. M. eds.), Academic Press, New York, pp. 167–241.

  40. Ferré-D’Amaré, A. R., & Burley, S. K. (1994). Use of dynamic light scattering to assess crystallizability of macromolecules and macromolecular assemblies. Structure, 2(5), 357–359.

    Article  Google Scholar 

  41. Talley, K., & Alexov, E. (2010). On the pH-optimum of activity and stability of proteins. Proteins: Structure, Function, and Bioinformatics, 78(12), 2699–2706.

    CAS  Google Scholar 

  42. Aziz, S., Jalal, F., Nawaz, M., Niaz, B., Shah, F.A., Memon, M. H.-u.-R., Latif, F., Nadeem, S., & Rajoka, M.I. (2011). Hyperproduction and thermal characterization of a novel invertase from a double mutant derivative of Kluyveromyces marxianus. Food Technology and Biotechnology, 49(4), 465–473.

  43. Hussain, A., Rashid, M. H., Perveen, R., & Ashraf, M. (2009). Purification, kinetic and thermodynamic characterization of soluble acid invertase from sugarcane (Saccharum officinarum L.). Plant Physiology and Biochemistry, 47(3), 188–194.

    Article  CAS  Google Scholar 

  44. Rodríguez-Chong, A., Ramírez, J. A., Garrote, G., & Vázquez, M. (2004). Hydrolysis of sugar cane bagasse using nitric acid: a kinetic assessment. Journal of Food Engineering, 61(2), 143–152.

    Article  Google Scholar 

  45. Tombari, E., Salvetti, G., Ferrari, C., & Johari, G. P. (2007). Kinetics and thermodynamics of sucrose hydrolysis from real-time enthalpy and heat capacity measurements. The Journal of Physical Chemistry B, 111(3), 496–501.

    Article  CAS  Google Scholar 

  46. Garcia-Viloca, M., Gao, J., Karplus, M., & Truhlar, D. G. (2004). How enzymes work: analysis by modern rate theory and computer simulations. Science, 303(5655), 186–195.

    Article  CAS  Google Scholar 

  47. Carson, M., Johnson, D. H., McDonald, H., Brouillette, C., & DeLucas, L. J. (2007). His-tag impact on structure. Acta Crystallographica Section D: Structural Biology, 63(3), 295–301.

    Article  CAS  Google Scholar 

  48. Mason, A. B., He, Q.-Y., Halbrooks, P. J., Everse, S. J., Gumerov, D. R., Kaltashov, I. A., Smith, V. C., Hewitt, J., & MacGillivray, R. T. A. (2002). Differential effect of a His tag at the N- and C-termini: functional studies with recombinant human serum transferrin. Biochemistry, 41(3), 9448–9454.

    Article  CAS  Google Scholar 

  49. Sabaty, M., Grosse, S., Adryanczyk, G., Boiry, S., Biaso, F., Arnoux, P., & Pignol, D. (2013). Detrimental effect of the 6 His C-terminal tag on YedY enzymatic activity and influence of the TAT signal sequence on YedY synthesis. BMC Biochemistry, 14(1), 28.

    Article  CAS  Google Scholar 

  50. Xu, C.-G., Fan, X.-J., Fu, Y.-J., & Liang, A.-H. (2008). Effect of location of the His-tag on the production of soluble and functional Buthus martensii Karsch insect toxin. Protein Expression and Purification, 59(1), 103–109.

    Article  CAS  Google Scholar 

  51. Bujacz, A., Jedrzejczak-Krzepkowska, M., Bielecki, S., Redzynia, I., & Bujacz, G. (2011). Crystal structures of the apo form of β-fructofuranosidase from Bifidobacterium longum and its complex with fructose. The FEBS Journal, 278(10), 1728–1744.

    Article  CAS  Google Scholar 

  52. Fülöp, V., Böcskei, Z., & Polgár, L. (1998). Prolyl oligopeptidase: an unusual β-propeller domain regulates proteolysis. Cell, 94(2), 161–170.

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by FRABA 14-2013 grant of University of Colima, Mexico, and by CONACyT PhD scholarship (registration number 270848). We thank Dr. Jean Jakoncic (BNL, NSLS-II) for his support on X-ray data collection using synchrotron radiation in order to go further on the crystallographic work for this investigation.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Juan Alberto Osuna-Castro or Abel Moreno.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 817 kb)

ESM 2

(DOCX 2478 kb)

ESM 3

(DOCX 97 kb)

ESM 4

(DOCX 67 kb)

ESM 5

(DOCX 440 kb)

ESM 6

(DOCX 161 kb)

ESM 7

(DOCX 970 kb)

ESM 8

(DOCX 807 kb)

ESM 9

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendoza-Llerenas, E.O., Pérez, D.J., Gómez-Sandoval, Z. et al. Lactobacillus plantarum WCFS1 β-Fructosidase: Evidence for an Open Funnel-Like Channel Through the Catalytic Domain with Importance for the Substrate Selectivity. Appl Biochem Biotechnol 180, 1056–1075 (2016). https://doi.org/10.1007/s12010-016-2152-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2152-2

Keywords

Navigation