Skip to main content
Log in

Enhancement of Lipid Production of Chlorella Pyrenoidosa Cultivated in Municipal Wastewater by Magnetic Treatment

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Despite the significant breakthroughs in research on microalgae as a feedstock for biodiesel, its production cost is still much higher than that of fossil diesel. One possible solution to overcome this problem is to optimize algal growth and lipid production in wastewater. The present study examines the feasibility of using magnetic treatment for enhancement of algal lipid production and wastewater treatment in outdoor-cultivated Chlorella pyrenoidosa. Results confirmed that magnetic treatment significantly enhances biomass and lipid productivity of C. pyrenoidosa by 12 and 10 %, respectively. Application of magnetic field in a semi-continuous culture resulted in highly treated wastewater with total nitrogen maintained under 15 mg L−1, ammonia nitrogen below 5 mg L−1, total phosphorus less than 0.5 mg L−1, and CODCr less than 50 mg L−1. In addition, magnetic treatment resulted in a decrease of wastewater turbidity, an increase of bacterial numbers, and an increase of active oxygen in wastewater which might be attributed to the enhancement of growth and lipid production of C. pyrenoidosa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gao, C. F., Zhai, Y., Ding, Y., & Wu, Q. Y. (2010). Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Applied Energy, 87(3), 756–761.

    Article  CAS  Google Scholar 

  2. Phukan, M. M., Chutia, R. S., Konwar, B. K., & Kataki, R. (2011). Microalgae Chlorella as a potential bio-energy feedstock. Applied Energy, 88(10), 3307–3312.

    Article  CAS  Google Scholar 

  3. Singh, A., & Olsen, S. I. (2011). A critical review of biochemical conversion, sustainability and life cycle assessment of algal biofuels. Applied Energy, 88(10), 3548–3555.

    Article  CAS  Google Scholar 

  4. Abomohra, A., El-Sheekh, M., & Hanelt, D. (2014). Pilot cultivation of the chlorophyte microalga Scenedesmus obliquus as a promising feedstock for biofuel. Biomass and Bioenergy, 64, 237–244.

    Article  CAS  Google Scholar 

  5. Uri, P. (2010). Accumulation of triglycerides in green microalgae: a potential source for biodiesel. FEBS Journal, 277(1), 5–36.

    Google Scholar 

  6. Jiang, L., Luo, S., Fan, X., Yang, Z., & Guo, R. (2011). Biomass and lipid production of marine microalgae using municipal wastewater and high concentration of CO2. Applied Energy, 88, 3336–3341.

    Article  CAS  Google Scholar 

  7. Yang, J., Xu, M., Zhang, X. Z., Hu, Q., Sommerfeld, M., & Chen, Y. S. (2011). Life-cycle analysis on biodiesel production from microalgae: water footprint and nutrients balance. Bioresource Technology, 102(1), 159–165.

    Article  CAS  Google Scholar 

  8. Ketheesan, B., & Nirmalakhandan, N. (2011). Development of a new airlift-driven raceway reactor for algal cultivation. Applied Energy, 88(10), 3370–3376.

    Article  CAS  Google Scholar 

  9. Markou, G., & Georgakakis, D. (2011). Cultivation of filamentous cyanobacteria (bluegreen algae) in agro-industrial wastes and wastewaters: a review. Applied Energy, 88(10), 3389–3401.

    Article  CAS  Google Scholar 

  10. Chen, G., Zhao, L., & Qi, Y. (2015). Enhancing the productivity of microalgae cultivated in wastewater toward biofuel production: a critical review. Applied Energy, 137, 282–291.

    Article  Google Scholar 

  11. Wang, L., Min, M., Li, Y., Chen, P., Chen, Y., Liu, Y., et al. (2010). Cultivation of green algae Chlorella sp. in different wastewaters from municipal wastewater treatment plant. Applied Biochemistry and Biotechnology, 162, 1174–1186.

    Article  CAS  Google Scholar 

  12. Zhou, W., Min, M., Li, Y., Hu, B., Ma, X., Cheng, Y., et al. (2012). A hetero-photoautotrophic two-stage cultivation process to improve wastewater nutrient removal and enhance algal lipid accumulation. Bioresource Technology, 110, 448–455.

    Article  CAS  Google Scholar 

  13. Salama, E. S., Kim, H. C., Abou-Shanab, R. A. I., Ji, M. K., Oh, Y. K., Kim, S. H., et al. (2013). Biomass, lipid content, and fatty acid composition of freshwater Chlamydomonas mexicana and Scenedesmus obliquus grown under salt stress. Bioprocess and Biosystems Engineering, 36, 827–833.

    Article  CAS  Google Scholar 

  14. Tu, R. J., Jin, W. B., Xi, T. T., Yang, Q., Han, S. F., & Abomohra, A. (2015). Effect of static magnetic field on the oxygen production of Scenedesmus obliquus cultivated in municipal wastewater. Water Research, 86, 132–138.

    Article  CAS  Google Scholar 

  15. Shi, J., Podola, B., & Melkonian, M. (2007). Removal of nitrogen and phosphorus from wastewater using microalgae immobilized on twin layers: an experimental study. Journal of Applied Phycology, 19(5), 417–423.

    Article  CAS  Google Scholar 

  16. Woertz, I., Feffer, A., Lundquist, T., & Nelson, Y. (2009). Algae grown on dairy and municipal wastewater for simultaneous nutrient removal and lipid production for biofuel feedstock. Journal of Environmental Engineering, 135(11), 1115–1122.

    Article  CAS  Google Scholar 

  17. Han, S. F., Jin, W. B., Tu, R. J., Abomohra, A., & Wang, Z. H. (2016). Optimization of aeration for biodiesel production by Scenedesmus obliquus grown in municipal wastewater. Bioprocess and Biosystems Engineering. doi:10.1007/s00449-016-1585-x.

    Google Scholar 

  18. Elliott, L. G., Feehan, C., Laurens, L. M. L., Pienkos, P. T., Darzins, A., & Posewitz, M. C. (2012). Establishment of a bioenergy-focused microalgal culture collection. Algal Research, 1, 102–113.

    Article  Google Scholar 

  19. Hong, F. T. (1995). Magnetic-field effects on biomolecules, cells, and living organisms. Biosystems, 36(3), 187–229.

    Article  CAS  Google Scholar 

  20. Liu, W. G. (2006). Research on the effect of magnetic field on the growth of algae. Water Purification Technology, 25(5), 19–21.

    Google Scholar 

  21. Sivasubramanian, V., Subramanian, V. V., Priya, L., & Murali, R. (2010). Application of pulsed magnetic field in improving the quality of algal biomass. Journal of Algal Biomass Utilization, 1(4), 1–9.

    Google Scholar 

  22. Li, Y. C., Chen, Y. F., Chen, P., Min, M., Zhou, W. G., Martinez, B., et al. (2011). Characterization of a microalga Chlorella sp. well adapted to highly concentrated municipal wastewater for nutrient removal and biodiesel production. Bioresource Technology, 102(8), 5138–5144.

    Article  CAS  Google Scholar 

  23. Han, S. F., Jin, W. B., Tu, R. J., & Wu, W. M. (2015). Biofuel production from microalgae as feedstock: current status and potential. Critical Reviews in Biotechnology, 35(2), 255–268.

    Article  CAS  Google Scholar 

  24. Tu, R. J., Jin, W. B., Wang, M., Han, S. F., Abomohra, A., & Wu, W. M. (2015). Improving of lipid productivity of the biodiesel promising green microalga Chlorella pyrenoidosa via low-energy ion implantation. Journal of Applied Phycology. doi:10.1007/s10811-015-0783-2.

    Google Scholar 

  25. Folch, J., Lees, M., & Stanley, G. H. S. (1957). A simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry, 226, 497–509.

    CAS  Google Scholar 

  26. State Environmental Protection Administration. (2002). Water and wastewater monitoring analysis method. Beijing: China Environmental Science Press.

    Google Scholar 

  27. Takahaski, F., & Kamezaki, T. (1985). Effect of magnetism on growth of Chlorella. Hakkokogaku Kaishi-Journal of the Society of Fermentation Technology, 63(1), 71–74.

    Google Scholar 

  28. McGriff, E. C., & McKinney, R. C. (1972). The removal of nutrients and organics by activated algae. Water Research, 6(10), 1155.

    Article  CAS  Google Scholar 

  29. Tam, N. F. Y., & Wong, Y. S. (1989). Wastewater nutrient removal by Chlorella pyrenoidosa and Scenedesmus sp. Environmental Pollution, 58, 19.

    Article  CAS  Google Scholar 

  30. Zhong, P., Lin, Z. F., Liu, Z. W., & Kong, L. R. (2005). The sources, species and measurement of reactive oxygen species in aquatic environment. Ecologic Science, 24(4), 364–367.

    Google Scholar 

  31. Cai, J., Wang, L., Wu, P., Li, Z. Q., Tong, L. G., & Sun, S. F. (2008). Study on oxygen enrichment from air by application of the gradient magnetic field. Journal of Magnetism and Magnetic Materials, 320, 171–181.

    Article  CAS  Google Scholar 

  32. Kovacs, P. E., Valentine, R. L., & Alvarez, P. (1997). The effect of static magnetic fields on biological systems: implications for enhanced biodegradation. Critical Reviews in Environment Science and Technology, 27(4), 319–382.

    Article  CAS  Google Scholar 

  33. Jung, J., Sanji, B., Godbole, S., & Sofer, S. (1993). Biodegradation of phenol—a comparative-study with and without applying magnetic-field. Journal of Chemical Technology and Biotechnology, 56(1), 73–76.

    Article  CAS  Google Scholar 

  34. Ji, Y. L., Wang, Y. H., Sun, J. S., Yan, T. Y., Li, J., Zhao, T. T., et al. (2010). Enhancement of biological treatment of wastewater by magnetic field. Bioresource Technology, 101(22), 8535–8540.

    Article  CAS  Google Scholar 

  35. Xu, X. L., Li, L., Guo, S. Y., & Cai, M. Y. (2005). Effect of static magnetic fields on the survival probability of bacteria. Microbiology, 32, 1–4.

    Google Scholar 

  36. Li, W., Sheng, G. P., Liu, X. W., Cai, P. J., Sun, M., Xiao, X., & Wang, Y. K. (2011). Impact of a static magnetic field on the electricity production of Shewanella-inoculated microbial fuel cells. Biosensors and Bioelectronics, 26, 3987–3992.

    Article  CAS  Google Scholar 

  37. Strašák, L., Vetterl, V., & Šmarda, J. (2002). Effects of low-frequency magnetic fields on bacteria Escherichia coli. Bioelectrochemistry, 55(1–2), 161–164.

    Article  Google Scholar 

  38. Muñoz, R., & Guieysse, B. (2006). Algal–bacterial processes for the treatment of hazardous contaminants: a review. Water Research, 40, 2799–2815.

    Article  Google Scholar 

  39. Chen, R., Li, R., Deitz, L., Liu, Y., Stevenson, R. J., & Liao, W. (2012). Freshwater algal cultivation with animal waste for nutrient removal and biomass production. Biomass and Bioenergy, 39, 128–138.

    Article  CAS  Google Scholar 

  40. Ryu, B., Kim, E. J., Kim, H., Kim, J., Choi, Y., & Yang, J. (2014). Simultaneous treatment of municipal wastewater and biodiesel production by cultivation of Chlorella vulgaris with indigenous wastewater bacteria. Biotechnology and Bioprocess Engineering, 19(2), 201–210.

    Article  CAS  Google Scholar 

  41. Wang, H. Y., Zeng, X. B., & Guo, S. Y. (2007). Effect of magnetic treatment on growth and antioxidant system of Chlorella vulgari. China Biotechnology, 27, 85–89.

    Google Scholar 

  42. Shi, W. L. (2005). The biologic effects of magnetization in sewage treatment. Journal of Lanzhou University (Natural Sciences), 41(2), 38–40.

    CAS  Google Scholar 

  43. Guo, S. Y., Li, Z. Y., Li, L., Cai, M. Y., & Zheng, B. S. (2002). Cultivation of Spirulina platensis with a magnetic field treatment. Journal of South China University of Technology, 30(11), 49–54.

    Google Scholar 

  44. Wang, H. Y., Zeng, X. B., & Guo, S. Y. (2005). Effects of electro-magnetic field on the physiological characteristics of Chlorella vulgaris and mechanisms analysis. Fisheries Science, 24(7), 12–14.

    Google Scholar 

  45. Small, D. P., Hüner, N. P., & Wan, W. (2012). Effect of static magnetic fields on the growth, photosynthesis and ultrastructure of Chlorella kessleri microalgae. Bioelectromagnetics, 33(4), 298–308.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Financial support from Shenzhen Science and Technology Innovation projects (project number JCYJ20150529114024234) is highly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenbiao Jin.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, S., Jin, W., Chen, Y. et al. Enhancement of Lipid Production of Chlorella Pyrenoidosa Cultivated in Municipal Wastewater by Magnetic Treatment. Appl Biochem Biotechnol 180, 1043–1055 (2016). https://doi.org/10.1007/s12010-016-2151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2151-3

Keywords

Navigation