Skip to main content
Log in

Effect of Vanadyl Rosiglitazone, a New Insulin-Mimetic Vanadium Complexes, on Glucose Homeostasis of Diabetic Mice

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Diabetes has been cited as the most challenging health problem in the twenty-first century. Accordingly, it is urgent to develop a new type of efficient and low-toxic antidiabetic medication. Since vanadium compounds have insulin-mimetic and potential hypoglycemic activities for type 1 and type 2 diabetes, a new trend has been developed using vanadium and organic ligands to form a new compound in order to increase the intestinal absorption and reduce the toxicity of vanadium compound. In the current investigation, a new organic vanadium compounds, vanadyl rosiglitazone, was synthesized and determined by infrared spectra. Vanadyl rosiglitazone and three other organic vanadium compounds were administered to the diabetic mice through oral administration for 5 weeks. The results of mouse model test indicated that vanadyl rosiglitazone could regulate the blood glucose level and relieve the symptoms of polydipsia, polyphagia, polyuria, and weight loss without side effects and was more effective than the other three organic vanadium compounds including vanadyl trehalose, vanadyl metformin, and vanadyl quercetin. The study indicated that vanadyl rosiglitazone presents insulin-mimetic activities, and it will be a good potential candidate for the development of a new type of oral drug for type 2 diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Canivell, S., & Gomis, R. (2014). Diagnosis and classification of autoimmune diabetes mellitus. Autoimmunity Reviews, 13, 403–407.

    Article  CAS  Google Scholar 

  2. Whiting, D. R., Guariguata, L., Weil, C., & Shaw, J. (2011). IDF diabetes atlas: global estimates of the prevalence of diabetes for 2011 and 2030. Diabetes Research and Clinical Practice, 94, 311–321.

    Article  Google Scholar 

  3. Honardoost, M., Sarookhani, M. R., Arefian, E., & Soleimani, M. (2014). Insulin resistance associated genes and miRNAs. Applied Biochemistry and Biotechnology, 174, 63–80.

    Article  CAS  Google Scholar 

  4. Pinhas-Hamiel, O., & Zeitler, P. (2007). Acute and chronic complications of type 2 diabetes mellitus in children and adolescents. Lancet, 369, 1823–1831.

    Article  Google Scholar 

  5. Stratton, I. M., Adler, A. I., Neil, H. A., Matthews, D. R., Manley, S. E., Cull, C. A., Hadden, D., Turner, R. C., & Holman, R. R. (2000). Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35): prospective observational study. BMJ, 321, 405–412.

    Article  CAS  Google Scholar 

  6. Hassan, H. A., & El-Gharib, N. E. (2015). Obesity and clinical riskiness relationship: therapeutic management by dietary antioxidant supplementation—a review. Applied Biochemistry and Biotechnology, 176, 647–669.

    Article  CAS  Google Scholar 

  7. Liu, Y., Gao, Z., Guo, Q., Wang, T., Lu, C., Chen, Y., Sheng, Q., Chen, J., Nie, Z., Zhang, Y., Wu, W., Lv, Z., & Shu, J. (2014). Anti-diabetic effects of CTB-APSL fusion protein in type 2 diabetic mice. Marine Drugs, 12, 1512–1529.

    Article  Google Scholar 

  8. Morabia, A., & Abel, T. (2006). The WHO report “preventing chronic diseases: a vital investment” and us. Sozial- und Präventivmedizin, 51, 74.

    Article  Google Scholar 

  9. Roy, S., Majumdar, S., Singh, A. K., Ghosh, B., Ghosh, N., Manna, S., Chakraborty, T., & Mallick, S. (2015). Synthesis, characterization, antioxidant status, and toxicity study of vanadium-rutin complex in Balb/c mice. Biological Trace Element Research, 166, 183–200.

    Article  CAS  Google Scholar 

  10. Boden, G., Chen, X., Ruiz, J., van Rossum, G. D., & Turco, S. (1996). Effects of vanadyl sulfate on carbohydrate and lipid metabolism in patients with non-insulin-dependent diabetes mellitus. Metabolism, 45, 1130–1135.

    Article  CAS  Google Scholar 

  11. Shechter, Y., Goldwaser, I., Mironchik, M., Fridkin, M., & Gefel, D. (2003). Historic perspective and recent developments on the insulin-like actions of vanadium; toward developing vanadium-based drugs for diabetes. Coordination Chemistry Reviews, 237, 3–11.

    Article  CAS  Google Scholar 

  12. Heyliger, C. E., Tahiliani, A. G., & McNeill, J. H. (1985). Effect of vanadate on elevated blood glucose and depressed cardiac performance of diabetic rats. Science, 227, 1474–1477.

    Article  CAS  Google Scholar 

  13. Collins, F. S., Green, E. D., Guttmacher, A. E., & Guyer, M. S. (2003). A vision for the future of genomics research. Nature, 422, 835–847.

    Article  CAS  Google Scholar 

  14. Wang, J., Yuen, V. G., & McNeill, J. H. (2001). Effect of vanadium on insulin sensitivity and appetite. Metabolism - Clinical and Experimental, 50, 667–673.

    Article  Google Scholar 

  15. Caravan, P., Gelmini, L., Glover, N., Herring, F. G., Li, H. L., McNeill, J. H., Rettig, S. J., Setyawati, I. A., Shuter, E., Sun, Y., Tracey, A. S., Yuen, V. G., & Orvig, C. (1995). Reaction chemistry of BMOV, bis(maltolato)oxovanadium(IV)—a potent insulin mimetic agent. Journal of the American Chemical Society, 117, 12759–12770.

    Article  Google Scholar 

  16. Yuen, V. G., Orvig, C., & McNeill, J. H. (1995). Comparison of the glucose-lowering properties of vanadyl sulfate and bis(maltolato)oxovanadium(IV) following acute and chronic administration. Canadian Journal of Physiology and Pharmacology, 73, 55–64.

    Article  CAS  Google Scholar 

  17. Poucheret, P., Verma, S., Grynpas, M. D., & McNeill, J. H. (1998). Vanadium and diabetes. Molecular and Cellular Biochemistry, 188, 73–80.

    Article  CAS  Google Scholar 

  18. Barrio, D. A., Williams, P. A., Cortizo, A. M., & Etcheverry, S. B. (2003). Synthesis of a new vanadyl(IV) complex with trehalose (TreVO): insulin-mimetic activities in osteoblast-like cells in culture. Journal of Biological Inorganic Chemistry, 8, 459–468.

    CAS  Google Scholar 

  19. Woo, L. C. Y., Yuen, V. G., Thompson, K. H., McNeill, J. H., & Orvig, C. (1999). Vanadyl-biguanide complexes as potential synergistic insulin mimics. Journal of Inorganic Biochemistry, 76, 251–257.

    Article  CAS  Google Scholar 

  20. Ferrer, E. G., Salinas, M. V., Correa, M. J., Naso, L., Barrio, D. A., Etcheverry, S. B., Lezama, L., Rojo, T., & Williams, P. A. (2006). Synthesis, characterization, antitumoral and osteogenic activities of quercetin vanadyl(IV) complexes. Journal of Biological Inorganic Chemistry, 11, 791–801.

    Article  CAS  Google Scholar 

  21. Li, W., Zhang, M., Gu, J., Meng, Z. J., Zhao, L. C., Zheng, Y. N., Chen, L., & Yang, G. L. (2012). Hypoglycemic effect of protopanaxadiol-type ginsenosides and compound K on type 2 diabetes mice induced by high-fat diet combining with streptozotocin via suppression of hepatic gluconeogenesis. Fitoterapia, 83, 192–198.

    Article  CAS  Google Scholar 

  22. Tu, P., Li, X., Ma, B., Duan, H., Zhang, Y., Wu, R., Ni, Z., Jiang, P., Wang, H., Li, M., & Zhu, J. (2015). Liver histone H3 methylation and acetylation may associate with type 2 diabetes development. Journal of Physiology and Biochemistry, 71, 89–98.

    Article  CAS  Google Scholar 

  23. Cam, M. C., Rodrigues, B., & McNeill, J. H. (1999). Distinct glucose lowering and beta cell protective effects of vanadium and food restriction in streptozotocin-diabetes. European Journal of Endocrinology, 141, 546–554.

    Article  CAS  Google Scholar 

  24. Jackson, T. K., Salhanick, A. I., Sparks, J. D., Sparks, C. E., Bolognino, M., & Amatruda, J. M. (1988). Insulin-mimetic effects of vanadate in primary cultures of rat hepatocytes. Diabetes, 37, 1234–1240.

    Article  CAS  Google Scholar 

  25. Morita, T., Imagawa, T., Kanagawa, A., & Ueki, H. (1995). Sodium orthovanadate increases phospholipase A2 activity in isolated rat fat pads: a role of phospholipase A2 in the vanadate-stimulated release of lipoprotein lipase activity. Biological and Pharmaceutical Bulletin, 18, 347–349.

    Article  CAS  Google Scholar 

  26. Maher, P. A. (1992). Stimulation of endothelial cell proliferation by vanadate is specific for microvascular endothelial cells. Journal of Cellular Physiology, 151, 549–554.

    Article  CAS  Google Scholar 

  27. Barnes, D. M., Sykes, D. B., Shechter, Y., & Miller, D. S. (1995). Multiple sites of vanadate and peroxovanadate action in Xenopus oocytes. Journal of Cellular Physiology, 162, 154–161.

    Article  CAS  Google Scholar 

  28. Hajjar, J. J., Fucci, J. C., Rowe, W. A., & Tomicic, T. K. (1987). Effect of vanadate on amino acid transport in rat jejunum. Proceedings of the Society for Experimental Biology and Medicine, 184, 403–409.

    Article  CAS  Google Scholar 

  29. Nakai, M., Watanabe, H., Fujiwara, C., Kakegawa, H., Satoh, T., Takada, J., Matsushita, R., & Sakurai, H. (1995). Mechanism on insulin-like action of vanadyl sulfate: studies on interaction between rat adipocytes and vanadium compounds. Biological and Pharmaceutical Bulletin, 18, 719–725.

    Article  CAS  Google Scholar 

  30. Duckworth, W. C., Solomon, S. S., Liepnieks, J., Hamel, F. G., Hand, S., & Peavy, D. E. (1988). Insulin-like effects of vanadate in isolated rat adipocytes. Endocrinology, 122, 2285–2289.

    Article  CAS  Google Scholar 

  31. Shechter, Y., & Karlish, S. J. (1980). Insulin-like stimulation of glucose oxidation in rat adipocytes by vanadyl (IV) ions. Nature, 284, 556–558.

    Article  CAS  Google Scholar 

  32. Tamura, S., Brown, T. A., Whipple, J. H., Fujita-Yamaguchi, Y., Dubler, R. E., Cheng, K., & Larner, J. (1984). A novel mechanism for the insulin-like effect of vanadate on glycogen synthase in rat adipocytes. Journal of Biological Chemistry, 259, 6650–6658.

    CAS  Google Scholar 

  33. McNeill, J. H., Yuen, V. G., Dai, S., & Orvig, C. (1995). Increased potency of vanadium using organic ligands. Molecular and Cellular Biochemistry, 153, 175–180.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work is supported by the Key Technologies R&D Program of Tianjin (14ZCZDSY00013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minggang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiang, P., Dong, Z., Ma, B. et al. Effect of Vanadyl Rosiglitazone, a New Insulin-Mimetic Vanadium Complexes, on Glucose Homeostasis of Diabetic Mice. Appl Biochem Biotechnol 180, 841–851 (2016). https://doi.org/10.1007/s12010-016-2137-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2137-1

Keywords

Navigation