Skip to main content
Log in

Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Candida rugosa lipases were immobilized onto collagen fibers through glutaraldehyde cross-linking method. The immobilization process has been optimized. Under the optimal immobilization conditions, the activity of the collagen-immobilized lipase reached 340 U/g. The activity was recovered of 28.3 % by immobilization. The operational stability of the obtained collagen-immobilized lipase for hydrolysis of olive oil emulsion was determined. The collagen-immobilized lipase showed good tolerance to temperature and pH variations in comparison to free lipase. The collagen-immobilized lipase was also applied as biocatalyst for synthesis of butyl butyrate from butyric acid and 1-butanol in n-hexane. The conversion yield was 94 % at the optimal conditions. Of its initial activity, 64 % was retained after 5 cycles for synthesizing butyl butyrate in n-hexane.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta, R., Gupta, N., & Rathi, P. (2004). Bacterial lipases: an overview of production, purification and biochemical properties. Applied Microbiology and Biotechnology, 64, 763–781.

    Article  CAS  Google Scholar 

  2. Martins, A. B., Silva, A. M., Schein, M. F., & Garcia-Galan, C. (2014). Comparison of the performance of commercial immobilized lipases in the synthesis of different flavor esters. Journal of Molecular Catalysis B: Enzymatic, 105, 18–25.

    Article  CAS  Google Scholar 

  3. Yassin, A., Mohamed, I., Ibrahim, M., & Yousoff, M. (2003). Effect of enzymatic interesterification on melting point of palm olein. Applied Biochemistry and Biotechnology, 110, 45–52.

    Article  CAS  Google Scholar 

  4. Bslarbi, E., Molina, E., & Chisti, Y. (2000). A process for high yield and scaleable recovery of high purity eicosapentaenoic acid esters from microalgae and fish oil. Enzyme and Microbial Technology, 26, 516–529.

    Article  Google Scholar 

  5. Malhotra, D., Mukherjee, J., & Munishwar, N. G. (2015). Lipase catalyzed transesterfication of castor oil by straight chain higher alcohols. Journal of Bioscience and Bioengineering, 119, 280–283.

    Article  CAS  Google Scholar 

  6. Yusdy, S. R., Patel, M., Yap, D. I., & Wang, C. (2009). Immobilization of L-lactate dehydrogenase on magnetic naoclusters for chiral systhesis of pharmaceutical compounds. Biochemical Engineering Journal, 48, 13–21.

    Article  CAS  Google Scholar 

  7. Aljawish, A., Chevalot, I., Janiewski, J., & Scher, J. (2015). Enzymatic synthesis of chitosan derivatives and their potential applications. Journal of Molecular Catalysis B: Enzymatic, 112, 25–39.

    Article  CAS  Google Scholar 

  8. Mendes, A. A., Oliveira, P. C., & Casteo, H. F. (2012). Properties and biotechnological applications of porcine pancreatic lipase. Journal of Molecular Catalysis B: Enzymatic, 78, 119–134.

    Article  CAS  Google Scholar 

  9. Nigam, S., Smehaotra, S., Vani, B., & Mehrotra, R. (2014). Lipase Immobilization techniques for biodiesel production: an overview. International Journal of Renewable Energy and Biofuels, 2014, 1–16.

    Article  Google Scholar 

  10. Mateo, C., Palomo, J. M., Fernandez-Lorente, G., Guisan, J. M., & Fernandez-Lafuente, R. (2007). Improvement of enzyme activity, stability and selectivity via immobilization techniques. Enzyme and Microbial Technology, 40, 1451–1463.

    Article  CAS  Google Scholar 

  11. Brzozowski, A. M., Derewenda, Z. S., Dodson, G. G., Lawson, D. M., & Turkenburg, J. P. (1991). A model for interfacial activation in lipases from the structure of a fungal lipase-inhibitor complex. Nature, 351, 491–494.

    Article  CAS  Google Scholar 

  12. Uppenberg, J., Patkar, S., Bergfors, T., & Jones, T. A. (1994). Crystallization and preliminary X-ray studies of lipase B from Candida antarctica. Journal of Molecular Biology, 235, 790–792.

    Article  CAS  Google Scholar 

  13. Yahya, A. R. M., Anderson, W. A., & Moo-Young, M. (1998). Ester synthesis in lipase catalyzed reactions. Enzyme and Microbial Technology, 23, 438–450.

    Article  CAS  Google Scholar 

  14. Basheer, S., Mogi, K., & Nakajima, M. (1995). Surfactant modified lipase for the catalysis of the interesterification of triglycerides and fatty acids. Biotechnology and Bioengineering, 45, 187–195.

    Article  CAS  Google Scholar 

  15. Rajendran, A., Palanisamy, A., & Thangavelu, V. (2009). Lipase catalyzed ester synthesis for food processing industries. Brazilian Archives of Biology and Technology, 52, 207–219.

    Article  CAS  Google Scholar 

  16. Martins, A., Friedrich, J., Cavalheiro, J., Garcia-Galan, C., Barbosa, O., Ayub, M., Fernandez-Lafuente, R., & Rodrigues, R. (2013). Improved production of butyl butyrate with lipase from Thermomyces lanuginosus immobilized on styrene-divinylbenzene beads. Bioresource Technology, 134, 417–422.

    Article  CAS  Google Scholar 

  17. Bansode, S. R., & Rathod, V. K. (2014). Ultrasound assisted lipase catalysed synthesis of isoamyl butyrate. Process Biochemistry, 49, 1297–1303.

    Article  CAS  Google Scholar 

  18. Xu, D., Ma, H., & Cheng, F. (2014). Preparation and application of zirconium sulfate supported on SAPO-34 molecular sieve as solid acid catalyst for esterification. Materials Research Bulletin, 53, 15–20.

    Article  CAS  Google Scholar 

  19. Hasan, F., Shah, A. A., & Hameed, A. (2006). Industrial applications of microbial lipases. Enzyme and Microbial Technology, 39, 235–251.

    Article  CAS  Google Scholar 

  20. Sheldon, R. A., & Van Pelt, S. (2013). Enzyme immobilisation in biocatalysis: Why, what and how. Chemical Society Reviews, 42(15), 6223–6235.

    Article  CAS  Google Scholar 

  21. Barbosa, O., Ortiz, C., Berenguer-Murcia, Á., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Strategies for the one-step immobilization-purification of enzymes as industrial biocatalysts. Biotechnology Advances, 33(5), 435–456.

    Article  CAS  Google Scholar 

  22. Minovska, V., Winkelhausen, E., & Kuzmanove, S. (2005). Lipase immobilized by different techniques on various support materials applied in oil hydrolysis. Journal of the Serbian Chemical Society, 70, 609–624.

    Article  Google Scholar 

  23. Fernandez-Lafuente, R. (2010). Lipase from Thermomyces lanuginosus: uses and prospects as an industrial biocatalyst. Journal of Molecular Catalysis B: Enzymatic, 62, 197–212.

    Article  CAS  Google Scholar 

  24. Barbosa, O., Torres, R., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R. C., & Fernandez-Lafuente, R. (2013). Heterofunctional supports in enzyme immobilization: from traditional immobilization protocols to opportunities in tuning enzyme properties. Biomacromolecules, 14(8), 2433–2462.

    Article  CAS  Google Scholar 

  25. Barbosa, O., Torres, R., Ortiz, C., & Lafuente, R. F. (2012). Versatility of glutaraldehyde to immobilize lipases: effect of the immobilization protocol on the properties of lipase B from Candida antarctica. Process Biochemistry, 47, 1220–1227.

    Article  CAS  Google Scholar 

  26. Walt, D. R., & Agayn, V. I. (1994). The chemistry of enzyme and protein immobilization with glutaraldehyde. Trends in Analytical Chemistry, 13, 425–430.

    Article  CAS  Google Scholar 

  27. Sheldon, R. A. (2011). Characteristic features and biotechnological applications of cross-linked enzyme aggregates (CLEAs). Applied Microbiology and Biotechnology, 92, 467–477.

    Article  CAS  Google Scholar 

  28. Betancor, L., Lopez-Gallego, F., Hidalgo, A., Alonso-Morales, N., Mateo, G., Fernandez-Lafuente, R., & Guisan, J. M. (2006). Different mechanisms of protein immobilization on glutaraldehyde activited supports: effect of support activation and immobilization conditions. Enzyme and Microbial Technology, 39, 877–882.

    Article  CAS  Google Scholar 

  29. Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Torres, R., Rodrigues, R. C., & Fernandez-Lafuente, R. (2014). Glutaraldehyde in bio-catalysts design: a useful crosslinker and a versatile tool in enzyme immobilization. RSC Advances, 4, 1583–1600.

    Article  CAS  Google Scholar 

  30. Elnashar, M., Mostafa, H., Morsyn, A., & Awad, G. E. (2013). Biocatalysts: isolation, identification, and immobilization of thermally stable lipase onto three novel biopolymeric supports. Industrial & Engineering Chemistry Research, 52, 14760–14767.

    Article  CAS  Google Scholar 

  31. Okobira, T., Matsuo, A., Matsumoto, H., Tanaka, T., Kai, K., Minari, C., Goto, M., Kawakita, H., & Uezu, K. (2015). Enhancement of immobilized lipase activity by design of polymer brushes on a hollow fiber membrane. Journal of Bioscience and Bioengineering, 120, 257–262.

    Article  CAS  Google Scholar 

  32. Mendes, A. A., Freitas, L., Carvalhoak, A. K., Oliveira, P. C., & Castro, H. F. (2011). Immobilization of a commercial lipase from Penicillium camembertii (lipase G) by different strategies. Enzyme Research, 4061, 1–8.

    Article  Google Scholar 

  33. Yang, J. J., Ma, X. X., Zhang, Z. S., Chen, B., Li, S., & Wang, G. J. (2010). Lipase immobilized by modification-coupled and adsorption-cross-linking methods: a comparative study. Biotechnology Advances, 28, 644–650.

    Article  CAS  Google Scholar 

  34. Rajaram, S. (2013). Enzyme immobilization: an overview on techniques and support materials. 3 Biotech, 3, 1–9.

    Google Scholar 

  35. Santos, J. C. S. D., Barbosa, O., Ortiz, C., Berenguer-Murcia, A., Rodrigues, R. C., & Fernandez-Lafuente, R. (2015). Importance of the support properties for immobilization or purification of enzymes. ChemCatChem, 7(16), 2413–2432.

    Article  Google Scholar 

  36. Katwa, L. C., Ramakrishna, M., & Rao, M. R. (1981). Spectrophtometric assay of immobilized tannase. Journal of Biosciences, 3, 135–142.

    Article  CAS  Google Scholar 

  37. Chen, S., Song, N., Liao, X. P., & Shi, B. (2011). Immobilization of catalase on Fe (III) modified collagen fiber. Chinese Journal of Biotechnology, 27, 1076–1081.

    CAS  Google Scholar 

  38. Cheng, H. M., Chen, M., Liao, L. L., & Li, Z. Q. (2009). Chemical and physical behavior of collagen fiber in alkaline solutions. Journal of the Society of Leather Technologists and Chemists, 93, 140–144.

    CAS  Google Scholar 

  39. Hou, A. J., Xu, B. B., Liang, L., Li, Y. H., & Peng, B. Y. (2011). A modified colorimetric assay of lipase activity using emulsified olive oil as the substrate. Leather Science and Engineering, 21, 22–27.

    CAS  Google Scholar 

  40. Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  41. Covington, A. D. (1997). Modern tanning chemistry. Chemical Society Reviews, 26, 111–126.

    Article  CAS  Google Scholar 

  42. Avery, N. C., & Bailey, A. J. (2008). Restraining cross-links responsible for the mechanical properties of collagen fibers: natural and artificial George. In P. Fratzl (Ed.), Collagen structure and mechanics (pp. 81–110). New York: Springer.

    Google Scholar 

  43. Cunha, A. G., Besteti, M. D., Manoel, E. A., Silva, A., & Freire, D. (2014). Preparation of core–shell polymer supports to immobilize lipase B from Candida antarctica: effect of the support nature on catalytic properties. Journal of Molecular Catalysis B: Enzymatic, 100, 59–67.

    Article  CAS  Google Scholar 

  44. Yu, W., Tong, D., Fang, M., Shao, P., & Zhou, C. (2015). Immobilization of Candida rugosa lipase on MSU-H type mesoporoussilica for selective esterification of conjugated linoleic acid isomers with ethanol. Journal of Molecular Catalysis B: Enzymatic, 111, 43–50.

    Article  CAS  Google Scholar 

  45. Hilal, N., Kochkodan, V., & Nigmatullin, R. (2006). Lipase-immobilized biocatalytic membranes for enzymatic esterification: comparison of various approaches to membrane preparation. Journal of Membrane Science, 268, 198–207.

    Article  CAS  Google Scholar 

  46. Cui, C., Tao, Y., Li, L., Chen, B., & Tan, T. (2013). Improving the activity and stability of Yarrowia lipolytica lipase Lip2 by immobilization on polyethyleneimine-coated polyurethane foam. Journal of Molecular Catalysis B: Enzymatic, 91, 59–66.

    Article  CAS  Google Scholar 

  47. Reshmi, R., & Sugunan, S. (2013). Superior activities of lipase immobilized on pure and hydrophobic clay supports: characterization and catalytic activity studies. Journal of Molecular Catalysis B: Enzymatic, 97, 36–44.

    Article  CAS  Google Scholar 

  48. Frenkel-Mullerad, H., & Avnir, D. (2005). Sol–gel materials as efficient enzyme protectors: preserving the activity of phosphatases under extreme pH conditions. Journal of the American Chemical Society, 127, 8077–8081.

    Article  CAS  Google Scholar 

  49. Xie, W. L., & Wang, J. L. (2014). Enzymatic production of biodiesel from soybean oil by using immobilized lipase on Fe3O4/Poly (styrene-methacrylic acid) magnetic microsphere as a biocatalyst. Energy and Fuels, 28, 2624–2631.

    Article  CAS  Google Scholar 

  50. Huang, X. J., Chen, P. C., Huang, F., Ou, Y., Chen, M. R., & Xu, Z. K. (2011). Immobilization of Candida rugosa lipase on electrospun cellulose nanofiber membrane. Journal of Molecular Catalysis B: Enzymatic, 70, 95–100.

    Article  CAS  Google Scholar 

  51. Iwai, M., Okumura, S., & Tsujisaka, Y. (1980). Synthesis of terpene alcohol esters by lipase. Agricultural and Biological Chemistry, 44, 2731–2732.

    CAS  Google Scholar 

  52. Yahya, A. R. M., Anderson, W. A., & Moo-Young, M. (1998). Ester synthesis in lipase-catalyzed reactions. Enzyme and Microbial Technology, 23, 438–450.

    Article  CAS  Google Scholar 

  53. Varma, N. M., & Madras, G. (2008). Kinetics of synthesis of butyl butyrate by esterification and transesterification in supercritical carbon dioxide. Journal of Chemical Technology and Biotechnology, 83, 1135–1144.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful for the financial support of National High Technology Research and Development Program of China (No. 2013AA06A306).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng Haiming.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 35 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dewei, S., Min, C. & Haiming, C. Collagen-Immobilized Lipases Show Good Activity and Reusability for Butyl Butyrate Synthesis. Appl Biochem Biotechnol 180, 826–840 (2016). https://doi.org/10.1007/s12010-016-2136-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2136-2

Keywords

Navigation