Skip to main content
Log in

Regeneration-Based Quantification of Coumarins (Scopoletin and Scoparone) in Abutilon indicum In Vitro Cultures

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Abutilon indicum exploited for its immense value has been propagated successfully through multiple shoot induction and somatic embryogenesis. Direct regeneration (8.20 ± 0.83 shoots) was achieved from nodal explants using 0.5 mg/l kinetin (Kn) in MS media. The basal callus from nodal explants turned embryogenic on subsequent introduction of 0.2 mg/l TDZ into the Kn-supplemented media, giving rise to somatic embryos. The embryogenic potential of calli expressed in terms of embryo-forming capacity (EFC) increased from 8.15 EFC to 20.95 EFC after plasmolysis. The phytochemical analysis (HPLC) for the presence of scopoletin and scoparone has revealed a unique accumulation pattern, with higher levels of scopoletin during the earlier stages and scoparone in the later stages of development. The embryogenic calli contained the highest amount of coumarins (99.20 ± 0.97 and 61.03 ± 0.47 μg/gFW, respectively) followed by regenerated plant (9.43 ± 0.20 and 36.36 ± 1.19 μg/gFW, respectively), obtained via somatic embryogenesis. Rapid multiplication of A. indicum equipped with two potent coumarins is important in order to meet the commercial demand for combat against dreadful diseases, thereby providing a new platform for plant-based drugs and their manufacture on a commercial scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Venugopala, K. N., Rashmi, V., & Odhav, B. (2013). Review on natural coumarin lead compounds for their pharmacological activity. BioMed Research International, 963248, 1–14.

    Article  Google Scholar 

  2. Iranshahi, M., Askari, M., Sahebkar, A., & Hadjipavlou-Litina, D. (2009). Evaluation of antioxidant, anti-inflammatory and lipoxygenase inhibitory activities of the prenylated coumarin umbelliprenin. DARU, 17, 99–103.

    CAS  Google Scholar 

  3. Bogdal, D. (1998). Coumarins: fast synthesis by Knoevenagel condensation under microwave irradiation. Journal of Chemical Research, 8, 468–469.

    Article  Google Scholar 

  4. Yoganarasimhan, S. N. (2000). Medicinal plants of India. Bangalore: Cyber Media.

    Google Scholar 

  5. Kirtikar, K. R., & Basu, B. D. (1991). Indian medicinal plants (2nd ed., pp. 371–72). Allahabad: Lalit Mohan Babu and Co.

    Google Scholar 

  6. Chopra, R. N., Nayer, S. L., & Chopra, I. C. (1986). Glossary of Indian medicinal plants. New Delhi: Publication and Information Directorate, CSIR.

    Google Scholar 

  7. Kirtikar, K. R., & Basu, B. D. (1975). Indian medicinal plants (1st ed., pp. 894–895). Dehra Dun: International book distributor.

    Google Scholar 

  8. Nadkarni, K.M. (1976). Indian materia medica, Volume I, 3rd ed., Popular Prakashan, Mumbai, p 8.

  9. Gaind, K. N., & Chopra, K. S. (1976). Phytochemical investigation of Abutilon indicum. Planta Medica, 30, 174–188.

    Article  CAS  Google Scholar 

  10. Seetharam, Y. N., Chalageri, G., Ramachandra, S., & Bheemachar, S. (2002). Hypoglycemic activity of Abutilon indicum leaf extracts in rats. Fitoterapia, 73, 156–159.

    Article  CAS  Google Scholar 

  11. Beha, E., Jung, A., Wiesner, J., Rimpler, H., Lanzer, M., & Heinrich, M. (2004). Antimalarial activity of extracts of Abutilon grandiflorum G. Don—a traditional Tanzanian medicinal plant. Phytotherapy Research, 18, 236–240.

    Article  CAS  Google Scholar 

  12. Porchezhian, E., & Ansari, S. H. (2005). Hepatoprotective activity of Abutilon indicum on experimental liver damage in rats. Phytomedicine, 12, 62–64.

    Article  CAS  Google Scholar 

  13. Mithilesh, S., & Rakhi, C. (2010). Improved clonal propagation of Spilanthes acmella Murr for production of scopoletin. Plant Cell Tissue & Organ Culture, 103, 243–253.

    Article  Google Scholar 

  14. Sarfaraj, H. M., Sheeba, F., Mohammad, A., Sarfaraz, A. M., Akhlakquer, R. M., & Srivastava, A. K. (2014). Phytochemical investigation and simultaneous estimation of bioactive lupeol and stigmasterol in Abutilon indicum by validated HPTLC method. Journal of Coastal Life Medicine, 2, 394–401.

    Google Scholar 

  15. Kang, T. H., Pae, H. O., Jeong, S. J., Yoo, J. C., Choi, B. M., Jun, C. D., Chung, H. T., Miyamoto, T., Higuchi, R., & Kim, Y. C. (1999). Scopoletin: an inducible nitric oxide synthesis inhibitory active constituent from Artemisia feddei. Planta Medica, 65, 400–403.

    Article  CAS  Google Scholar 

  16. Chang, H. M., & But, P. P. H. (1987). In H-M. Chang., & P-H. B. Paul (Ed.), Pharmacology and applications of Chinese materia medica (pp. 867–871). Singapore: World Scientific.

  17. Huang, H. C., Huang, Y. L., & Chang, J. H. (1992a). Possible mechanism of immunosuppressive effect of scoparone (6,7-dimethoxycoumarin). European Journal of Pharmacology, 217, 143–148.

    Article  CAS  Google Scholar 

  18. Huang, H. C., Lee, C. R., & Weng, Y. L. (1992b). Vasodilator effect of scoparone (6,7-dimethoxycoumarin) from a Chinese herb. European Journal of Pharmacology, 218, 123–128.

    Article  CAS  Google Scholar 

  19. Canter, H. P., Thomas, H., & Ernst, E. (2005). Bringing medicinal plants into cultivation: opportunities and challenges for biotechnology. Trends in Biotechnology, 23, 180–185.

    Article  CAS  Google Scholar 

  20. Jing, L., Juan, W., Jinxin, L., Dahui, L., Hongfa, L., Wenyuan, G., Jianli, L., & Shujie, L. (2016). Aspergillus niger enhance bioactive compounds biosynthesis as well as expression of functional genes in adventitious roots of Glycyrrhiza uralensis Fisch. Applied Biochemistry and Biotechnology, 178, 576–593.

    Article  Google Scholar 

  21. Ravishankar, G. A., & Rao, R. S. (2000). Biotechnological production of phytopharmaceuticals. Journal of Biochemistry Molecular Biology and Biophysics, 4, 73–102.

    CAS  Google Scholar 

  22. Raemakers, C. J. J. M., Jacobsen, E., & Visser, R. G. F. (1995). Secondary somatic embryogenesis and applications in plant breeding. Euphytica, 81, 93–107.

    Article  Google Scholar 

  23. Merkle S. A. (1997), in Biotechnology of ornamental plants: somatic embryogenesis in ornamentals (R. L. Geneve, J. E. Preece, & S. A. Merkle., ed.), CAB International, Wallingford, pp. 13–33.

  24. Gaj, M. D. (2001). Direct somatic embryogenesis as a rapid and efficient system for in vitro regeneration of Arabidopsis thaliana. Plant Cell Tissue & Organ Culture, 64, 39–46.

    Article  Google Scholar 

  25. Shohael, A. M., Ali, M. B., Yu, K. W., Hahn, E. J., & Paek, K. Y. (2013). Effects of Murashige and Skoog medium strength on germination and secondary metabolites production of Eleutherococcus senticosus’s somatic embryos in bioreactor. International Journal of Bioscience, 3, 155–163.

    CAS  Google Scholar 

  26. Rout, J. R., Manorama, M., Ritarani, D., & Santilata, S. (2009). In vitro micropropagation of Abutilon indicum L. through leaf explants. Plant Tissue Culture & Biotechnology, 19, 177–184.

    Google Scholar 

  27. Sudarshana, M. S., Nissar, A. R., & Girish, H. V. (2016). In vitro regenerative potentials of the medicinal plant Abutilon indicum (L.) Sweet. African Journal of Biotechnology, 15, 472–480.

    Article  Google Scholar 

  28. Murashige, T., & Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum, 15, 473–497.

    Article  CAS  Google Scholar 

  29. Shiveirou, R., Suman, K., & Pramod, T. (2014). Plant regeneration through direct somatic embryogenesis from immature zygotic embryos of the medicinal plant, Paris polyphylla Sm. Plant Cell Tissue and Organ Culture, 118, 44.

    Google Scholar 

  30. Kiranmayee, R., Bhuvaneswari, C. H., Suryakala, G., Lakshmi, N. M., & Archana, G. (2011). Direct and indirect organogenesis of Alpinia galanga and the phytochemical analysis. Applied Biochemistry and Biotechnology, 165, 1366–1378.

    Article  Google Scholar 

  31. Johansen, D. A. (1940). Plant microtechnique, 1st ed., McGraw-Hill, New York.

  32. Shinde, P. B., Katekhaye, S. D., Mulik, M. B., & Laddha, K. S. (2014). Rapid simultaneous determination of marmelosin, umbelliferone and scopoletin from Aegle marmelos fruit by RP-HPLC. Journal of Food Science & Technology, 51, 2251–2255.

    Article  CAS  Google Scholar 

  33. Ma, C. H., Ke, W., Sun, Z. L., Peng, J. Y., Li, Z. X., Zhou, X., Fan, G. R., & Huang, C. G. (2006). Large-scale isolation and purification of scoparone from Herba artemisiae scopariae by high-speed counter-current chromatography. Chromatographia, 64, 83–87.

    Article  CAS  Google Scholar 

  34. Mohite, M. S., Shelar, P. A., Raje, V. N., Babar, S. J., & Sapkal, R. K. (2012). Review on pharmacological properties of Abutilon indicum. Asian Journal of Pharmaceutical Research, 2, 156–160.

    Google Scholar 

  35. Khan, R. S., Senthi, M., Rao, P. C., Basha, A., Alvala, M., Tummuri, D., Masubuti, H., Fujimoto, Y., & Begum, A. S. (2015). Cytotoxic constituents of Abutilon indicum leaves against U87MG human glioblastoma cells. National Product Research, 29, 1069–1073.

    Article  CAS  Google Scholar 

  36. Roshan, S., Ali, S., Khan, A., Tazneem, B., & Purohit, M. G. (2008). Wound healing activity of Abutilon indicum. Pharmacognosy Magazine, 4, 85–88.

    Google Scholar 

  37. Mitra, M., Ali, R. L. M., & Zahra, O. A. (2013). The induction of seed germination using sulfuric acid, gibberellic acid and hot water in Robinia pseudoacacia L. International Research Journal of pharmaceutical and Applied Sciences, 4, 96–98.

    Google Scholar 

  38. Groot, S. P. C., & Karssen, C. M. (1987). Gibberellins regulate seed germination in tomato by endosperm weakening: a study with gibberellin-deficient mutants. Planta, 171, 525–531.

    Article  CAS  Google Scholar 

  39. Mojtaba, K., Javad, H., Ali, A., Alireza, A., Antonio, P., Silvia, T., Lorenzo, G., & Luciana, G. A. (2015). Opposing effects of external gibberellin and daminozide on Stevia growth and metabolites. Applied Biochemistry and Biotechnology, 175, 780–791.

    Article  Google Scholar 

  40. Patrick, V. A., & Bonga, J. M. (2000). Influencing micropropagation and somatic embryogenesis in mature trees by manipulation of phase change, stress and culture environment. Tree Physiology, 20, 921–928.

    Article  Google Scholar 

  41. Feher, A., Pasternak, T. P., & Dudits, D. (2003). Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue & Organ Culture, 74, 201–228.

    Article  CAS  Google Scholar 

  42. Gaj, M. D. (2004). Factors influencing somatic embryogenesis induction and plant regeneration with particular reference to Arabidopsis thaliana (L.) Heynh. Plant Growth Regulation, 43, 27–47.

    Article  CAS  Google Scholar 

  43. Jiménez, V. M. (2005). Involvement of plant hormones and plant hormones and plant growth regulators on in vitro somatic embryogenesis. Plant Growth Regulation, 47, 91–110.

    Article  Google Scholar 

  44. Agrawal, D. C., Banerjee, A. K., Kolala, R. R., Dhage, A. B., Kulkarni, A. V., Nalawade, S. M., Hazra, S., & Krishnamurthy, K. V. (1997). In vitro induction of multiple shoots and plant regeneration in cotton (Gossypium hirsutum L.). Plant Cell Reports, 16, 647–652.

    Article  CAS  Google Scholar 

  45. Shinoyama, H., Nomura, Y., Tsuchiya, T., & Kazuma, T. (2004). A simple and efficient method for somatic embryogenesis and plant regeneration from leaves of Chrysanthemum (Dendranthema grandiflora (Ramat.) Kitamura). Plant Biotechnology, 21, 25–30.

    Article  CAS  Google Scholar 

  46. Naing, A. H., Kim, C. K., Yun, B. J., Jin, J. Y., & Lim, K. B. (2013). Primary and secondary somatic embryogenesis in Chrysanthemum cv. Euro. Plant Cell Tissue & Organ Culture, 112, 361–368.

    Article  Google Scholar 

  47. Varutharaju, K., Soundarraju, C., Thilip, C., Aslam, A., & Shajahan, A. (2014). High efficiency direct shoot organogenesis from leaf segments of Aerva lanata (L.) Juss. ex Schult by using thidiazuron. The Scientific World Journal, 652919, 1–6.

    Article  Google Scholar 

  48. George, E. F. (1996). Plant propagation by tissue culture: in practice pt.2. England: Exegetics.

  49. George, E. F. (1993). Plant propagation by tissue culture: in theory pt.1. England: Exegetics.

  50. Mok, M. C., Martin, R. C., & Mok, D. W. S. (2000). Cytokinins: biosynthesis, metabolism and perception. In Vitro Cellular and Developmental Biology–Plant, 36, 102–107.

    Article  CAS  Google Scholar 

  51. Khawar, M. K., Sancak, C., Uranbey, S., & Ozcan, S. (2004). Effect of thidiazuron on shoot regeneration from different explants of Lentil (Lens culinaris Medik.) via organogenesis. Turkish Journal of Botany, 28, 421–426.

    Google Scholar 

  52. Yang, X., Lu, J., Jaime, A., da Silva, T., & Ma, G. (2012). Somatic embryogenesis and shoot organogenesis from leaf explants of Primulina tabacum. Plant Cell Tissue & Organ Culture, 109, 213–221.

    Article  Google Scholar 

  53. Nolan, K. E., Irwanto, R. R., & Rose, R. J. (2003). Auxin up-regulates MtSERK1 expression in both Medicago truncatula root-forming and embryogenic cultures. Plant Physiology, 133, 218–230.

    Article  CAS  Google Scholar 

  54. Hecht, V., Vielle-Calzada, J. P., Hartog, M. V., Schmidt, D. L., Boutilier, K., Grossniklaus, U., & de Vries, S. C. (2001). The Arabidopsis somatic embryogenesis receptor kinase 1 gene is expressed in developing ovules and embryos and enhances embryogenic competence in culture. Plant Physiology, 127, 803–816.

    Article  CAS  Google Scholar 

  55. Vasil, V., & Vasil, I. K. (1982). The ontogeny of somatic embryos of Pennisetum americanum (L.) Schum. I. In cultured immature embryos. Botanical Gazette, 14, 454.

    Article  Google Scholar 

  56. Gray, D. J., & Conger, B. V. (1985), in Tissue culture in forestry and agriculture: somatic embryo ontogeny in tissue cultures of orchard grass (R. R. Henke., K. W. Hughes., M. J. Constantin., & A. Hollaender., ed.), Plenum Press, New York, pp. 49–58.

  57. Lu, C. Y., & Vasil, I. K. (1985). Histology of somatic embryogenesis in Panicum maximum (guinea grass). American Journal of Botany, 72, 1908.

    Article  Google Scholar 

  58. Dunstan, D. I., Short, K. C., & Thomas, E. (1978). The anatomy of secondary morphogenesis in cultured scutellum tissues of Sorghum bicolor. Protoplasma, 97, 251.

    Article  Google Scholar 

  59. Cionini, P. G., Bennici, A., Alpi, A., & D’Amato, F. (1976). Suspensor, gibberellin and in vitro development of Phaseolus coccineus embryos. Planta, 131, 115–117.

    Article  CAS  Google Scholar 

  60. Gray, D. J. (1990), in Biotechnology in tall fescue improvement: somatic cell culture and embryogenesis in Poaceae (Michael J. Kasperbauer., ed.), CRC press, Florida, pp. 25–57.

  61. Vasic, D., Alibert, G., & Skoric, D. (2001). Protocols for efficient repetitive and secondary somatic embryogenesis in Helianthus maximiliani (Schrader). Plant Cell Reports, 20, 121–125.

    Article  CAS  Google Scholar 

  62. Ćosić, T., Vinterhalter, B., Vinterhalter, D., Mitić, N., Cingel, A., Savić, J., Bohanec, B., & Ninković, S. (2013). In vitro plant regeneration from immature zygotic embryos and repetitive somatic embryogenesis in kohlrabi (Brassica oleracea var. gongylodes). In Vitro Cellular and Developmental Biology–Plant, 49, 294–303.

    Article  Google Scholar 

  63. Xu, P., Zhang, Z., Wang, B., Xia, X., & Jia, J. (2012). Somatic embryogenesis and plant regeneration in chrysanthemum (Yuukou). Plant Cell Tissue & Organ Culture, 111, 393–397.

    Article  Google Scholar 

  64. Anisuzzaman, M., Jarin, S., Naher, K., Akhtar, M. M., Alam, M. J., Khalekuzzaman, M., Alam, I., & Alam, M. F. (2008). Callus induced organogenesis in Okra (Abelmoschus esculentus L. Moench). Asian Journal of Plant Sciences, 7, 677–681.

    Article  CAS  Google Scholar 

  65. Charles, R. S., Sakhanokho, H. F., Toueix, Y., Dje, Y., Sangare, A., & Branchard, M. (2010). Protocols for callus and somatic embryo initiation for Hibiscus sabdariffa L. (Malvaceae): influence of explant type, sugar, and plant growth regulators. Australian Journal of Crop Science, 4, 98–106.

    Google Scholar 

  66. Syed, S. H., Tayyab, H., & Riazuddin, S. (2005). Recurrent somatic embryogenesis and twin embryo production in cotton. Pakistan Journal of Biological Sciences, 8, 141–145.

    Article  Google Scholar 

  67. Manoj, K., Harpal, S., Anoop, K. S., Praveen, C. V., & Pradhyumna, K. S. (2013). Induction and establishment of somatic embryogenesis in elite Indian cotton cultivar (Gossypium hirsutum L. cv Khandwa-2). Plant Signaling & Behavior, 8, e26761–e26766.

    Google Scholar 

  68. Pathi, K. M., Tula, S., & Tuteja, N. (2013). High frequency regeneration via direct somatic embryogenesis and efficient Agrobacterium mediated genetic transformation of tobacco. Plant Signaling & Behavior, 8, e24354.

    Article  Google Scholar 

  69. Anita, W., Agnieszka, G., Anna, P. B., Norikazu, T., Sabina, Z., Rafal, W., Zbigniew, P., Stefan, M., & Marcin, F. (2012). Identification of genes up regulated during somatic embryogenesis of cucumber. Plant Physiology Biochemistry, 50, 54–64.

    Article  Google Scholar 

  70. Rey, H. Y., Faloci, M., Medina, R., Dolce, N., Engelmann, F., & Mroginski, L. (2013). Cryopreservation of Arachis pintoi (Leguminosae) somatic embryos. Cryoletters, 34, 571–582.

    CAS  Google Scholar 

  71. Bakrudeen, A. A. A., & Arun, K. R. (2009). In vitro propagation of Monocot (Costus pictus D. Don)—an antidiabetic medicinal plant. Journal of Agricultural Technology, 5, 361–369.

    Google Scholar 

  72. Ewelina, P., Tukasz, K., Przemystaw, S., & Halina, W. (2015). Shoot organogenesis, molecular analysis and secondary metabolite production of micropropagated Rehmannia glutinosa Libosch. Plant Cell Tissue and Organ Culture, 120, 539–549.

    Article  Google Scholar 

  73. Kim, B. G., Lee, Y., Hur, H. G., Lim, Y., & Ahn, J. H. (2006). Production of three O-methylated esculetins with Escherichia coli expressing O-methyltransferase from poplar. Bioscience, Biotechnology and Biochemistry, 70, 1269–1272.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by the University Grants Commission (UGC) in the form of Dr. D.S. Kothari postdoctoral fellowship to Dr. Kiranmayee Rao under the grant number [no.F.4-2/2006(BSR)/13-738/2012(BSR)].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kiranmayee Rao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rao, K., Chodisetti, B., Gandi, S. et al. Regeneration-Based Quantification of Coumarins (Scopoletin and Scoparone) in Abutilon indicum In Vitro Cultures. Appl Biochem Biotechnol 180, 766–779 (2016). https://doi.org/10.1007/s12010-016-2131-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2131-7

Keywords

Navigation