Skip to main content
Log in

Improving Erythritol Production of Aureobasidium pullulans from Xylose by Mutagenesis and Medium Optimization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

The biotransformation of xylose, the second most abundant sugar, has been a hot topic in recent years. In this work, Aureobasidium pullulans CGMCC3.0837 was subjected to UV mutagenesis to improve its erythritol production from xylose. The erythritol production of the obtained mutant ER35 was 50.92 % (17.28 g/L) higher than that of the parent strain. Response surface methodology was applied to optimize the medium composition. Yeast extract, KH2PO4, and citric acid were the key factors influencing erythritol synthesis, and the optimal concentrations were 17.82, 0.76, and 6.60 g/L, respectively. Under the optimized conditions, 31.75 and 31.42 g/L erythritol were obtained in shake flasks and in a 5-L fermentor, respectively. ER35 also showed a good consuming ability on xylose mother liquor with a final erythritol production of 26.35 g/L. This report provided insights into the potential of A. pullulans for the production of erythritol using xylose as a carbon source.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Olinger, P. M., & Velasco, V. S. (1996). Opportunities and advantages of sugar replacement. Cereal Foods World, 41, 110–117.

    Google Scholar 

  2. Bernt, W. O., Borzelleca, J. F., Flamm, G., & Munro, I. C. (1996). Erythritol: a review of biological and toxicological studies. Regulatory Toxicology & Pharmacology, 24, 191–197.

    Article  Google Scholar 

  3. Boesten, D. M. P. H. J., den Hartog, G. J. M., de Cock, P., Douwina, B., Angela, B., & Aalt, B. (2015). Health effects of erythritol. Nutrafoods, 14, 3–9.

    Article  CAS  Google Scholar 

  4. Park, Y. C., Lee, D. Y., Lee, D. H., & Kim, H. J. (2005). Proteomics and physiology of erythritol-producing strains. Journal of Chromatography B Analytical Technologies in the Biomedical & Life Sciences, 815, 251–260.

    Article  CAS  Google Scholar 

  5. Marimuthu, J., Kyoung-Mi, L., Manish Kumar, T., Jung-Soo, K., Paramasamy, G., Sang-Yong, K., et al. (2009). Isolation of a novel high erythritol-producing Pseudozyma tsukubaensis and scale-up of erythritol fermentation to industrial level. Applied Microbiology & Biotechnology, 83, 225–231.

    Article  Google Scholar 

  6. Kim, S. Y., Lee, K. H., Kim, J. H., & Oh, D. K. (1997). Erythritol production by controlling osmotic pressure in Trigonopsis variabilis. Biotechnology Letters, 19, 727–729.

    Article  CAS  Google Scholar 

  7. Rymowicz, W. R. A., & Marcinkiewicz, M. (2009). High-yield production of erythritol from raw glycerol in fed-batch cultures of Yarrowia lipolytica. Biotechnology Letters, 31, 377–380.

    Article  CAS  Google Scholar 

  8. Ryu, Y. W., Park, C. Y., Park, J. B., Kim, S. Y., & Seo, J. H. (2000). Optimization of erythritol production by Candida magnoliae in fed-batch culture. Journal of Industrial Microbiology & Biotechnology, 25, 100–103.

    Article  CAS  Google Scholar 

  9. Vijaikishore, P., & Karanth, N. G. (1986). Factors affecting glycerol production by Pichia farinosa under alkaline conditions. Applied Biochemistry & Biotechnology, 13, 189–205.

    Article  CAS  Google Scholar 

  10. Mirończuk, A. M., Rakicka, M., Biegalska, A., Rymowicz, W., & Dobrowolski, A. (2015). A two-stage fermentation process of erythritol production by yeast Y. lipolytica from molasses and glycerol. Bioresource Technology, 198, 445–455.

    Article  Google Scholar 

  11. Kobayashi, Y., Iwata, H., Mizushima, D., Ogihara, J., & Kasumi, T. (2015). Erythritol production by Moniliella megachiliensis using nonrefined glycerol waste as carbon source. Letters in Applied Microbiology, 60(5), 475–480.

    Article  CAS  Google Scholar 

  12. Chen, Y., Huang, W., Fu, G., Guo, J., Liu, M., Guo, X., et al. (2015). A genetic transformation protocol for the xylose-fermenting yeast Spathaspora passalidarum. Engineering in Life Sciences, 15, 550–555.

    Article  Google Scholar 

  13. Chen, Y., Guo, J., Li, F., Liu, M., Zhang, X., Guo, X., et al. (2014). Production of pullulan from xylose and hemicellulose hydrolysate by Aureobasidium pullulans AY82 with pH control and DL-dithiothreitol addition. Biotechnology & Bioprocess Engineering, 19, 282–288.

    Article  CAS  Google Scholar 

  14. Savergave, L. S., Gadre, R. V., Vaidya, B. K., & Narayanan, K. (2011). Strain improvement and statistical media optimization for enhanced erythritol production with minimal by-products from Candida magnoliae mutant R23. Biochemical Engineering Journal, 55, 92–100.

    Article  CAS  Google Scholar 

  15. Yoon, S., Hong, E., Kim, S., Lee, P., Kim, M., Yang, H., et al. (2011). Optimization of culture medium for enhanced production of exopolysaccharide from Aureobasidium pullulans. Bioprocess & Biosystems Engineering, 35, 167–172.

    Article  Google Scholar 

  16. Jiang, L. (2010). Optimization of fermentation conditions for pullulan production by Aureobasidium pullulan using response surface methodology. Carbohydrate Polymers, 79, 414–417.

    Article  CAS  Google Scholar 

  17. Yang, L. B., Zhan, X. B., Zhu, L., Gao, M. J., & Lin, C. C. (2015). Optimization of a low-cost hyperosmotic medium and establishing the fermentation kinetics of erythritol production by Yarrowia lipolytica from crude glycerol. Preparative Biochemistry & Biotechnology.

  18. Haaland, P. D. (Ed.). (1989). Separating signals from the noise. Experimental design inbiotechnology (pp. 61–83). New York: Marcel Dekker.

  19. Ghezelbash, G. R., Nahvi, I., & Emamzadeh, R. (2014). Improvement of erythrose reductase activity, deletion of by-products and statistical media optimization for enhanced erythritol production from Yarrowia lipolytica mutant 49. Current Microbiology, 69, 149–157.

    Article  CAS  Google Scholar 

  20. Cheng, H., Wang, B., Lv, J., Jiang, M., Lin, S., & Deng, Z. (2011). Xylitol production from xylose mother liquor: a novel strategy that combines the use of recombinant Bacillus subtilis and Candida maltose. Microbial Cell Factories, 10, 1039–1043.

    Google Scholar 

  21. Zhilin, L., Han, X., Weihong, J., Yu, J., & Sheng, Y. (2013). Improvement of solvent production from xylose mother liquor by engineering the xylose metabolic pathway in Clostridium acetobutylicum EA 2018. Applied Biochemistry & Biotechnology, 171, 555–568.

    Article  Google Scholar 

Download references

Acknowledgments

The research was supported by the “Twelfth Five-Year” National Science and technology project in rural areas (grant no. 2012AA101805).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yefu Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Guo, J., Li, J., Chen, Y. et al. Improving Erythritol Production of Aureobasidium pullulans from Xylose by Mutagenesis and Medium Optimization. Appl Biochem Biotechnol 180, 717–727 (2016). https://doi.org/10.1007/s12010-016-2127-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2127-3

Keywords

Navigation