Skip to main content
Log in

Sound Waves Induce Neural Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Ryanodine Receptor-Induced Calcium Release and Pyk2 Activation

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Mesenchymal stem cells (MSCs) have shown considerable promise as an adaptable cell source for use in tissue engineering and other therapeutic applications. The aims of this study were to develop methods to test the hypothesis that human MSCs could be differentiated using sound wave stimulation alone and to find the underlying mechanism. Human bone marrow (hBM)-MSCs were stimulated with sound waves (1 kHz, 81 dB) for 7 days and the expression of neural markers were analyzed. Sound waves induced neural differentiation of hBM-MSC at 1 kHz and 81 dB but not at 1 kHz and 100 dB. To determine the signaling pathways involved in the neural differentiation of hBM-MSCs by sound wave stimulation, we examined the Pyk2 and CREB phosphorylation. Sound wave induced an increase in the phosphorylation of Pyk2 and CREB at 45 min and 90 min, respectively, in hBM-MSCs. To find out the upstream activator of Pyk2, we examined the intracellular calcium source that was released by sound wave stimulation. When we used ryanodine as a ryanodine receptor antagonist, sound wave-induced calcium release was suppressed. Moreover, pre-treatment with a Pyk2 inhibitor, PF431396, prevented the phosphorylation of Pyk2 and suppressed sound wave-induced neural differentiation in hBM-MSCs. These results suggest that specific sound wave stimulation could be used as a neural differentiation inducer of hBM-MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Fu, Y. S., Cheng, Y. C., Lin, M. Y., Cheng, H., Chu, P. M., Chou, S. C., Shih, Y. H., Ko, M. H., & Sung, M. S. (2006). Conversion of human umbilical cord mesenchymal stem cells in Wharton’s jelly to dopaminergic neurons in vitro: potential therapeutic application for Parkinsonism. Stem Cells, 24, 115–24.

    Article  Google Scholar 

  2. Karahuseyinoglu, S., Kocaefe, C., Balci, D., Erdemli, E., & Can, A. (2008). Functional structure of adipocytes differentiated from human umbilical cord stroma derived stem cells. Stem Cells, 26, 682–291.

    Article  Google Scholar 

  3. Ma, L., Feng, X. Y., Cui, B. L., Law, F., Jiang, X. W., Yang, L. Y., Xie, Q. D., & Huang, T. H. (2005). Human umbilical cord Wharton’s jelly-derived mesenchymal stem cells differentiation into nerve-like cells. Chinese Medical Journal, 118, 1987–1993.

    CAS  Google Scholar 

  4. Mitchell, K. E., Weiss, M. L., Mitchell, B. M., Martin, P., Davis, D., Morales, L., Helwig, B., Beerenstrauch, M., Abou-Easa, K., Hildreth, T., et al. (2003). Matrix cells from Wharton’s jelly form neurons and glia. Stem Cells, 21, 50–60.

    Article  CAS  Google Scholar 

  5. Pereira, W. C., Khushnooma, I., Madkaikar, M., & Ghosh, K. (2008). Reproducible methodology for the isolation of mesenchymal stem cells from human umbilical cord and its potential for cardiomyocyte generation. Journal of Tissue Engineering and Regenerative Medicine, 2, 394–399.

    Article  CAS  Google Scholar 

  6. Wu, K. H., Zhou, B., Lu, S. H., Feng, B., Yang, S. G., Du, W. T., Gu, D. S., Han, Z. C., & Liu, Y. L. (2007). In vitro and in vivo differentiation of human umbilical cord derived stem cells into endothelial cells. Journal of Cellular Biochemistry, 100, 608–616.

    Article  CAS  Google Scholar 

  7. Sanchez-Ramos, J., Song, S., Cardozo-Pelaez, F., Hazzi, C., Stedeford, T., Willing, A., Freeman, T. B., Saporta, S., Janssen, W., Patel, N., et al. (2000). Adult bone marrow stromal cells differentiate into neural cells in vitro. Experimental Neurology, 164, 247–256.

    Article  CAS  Google Scholar 

  8. Bertani, N., Malatesta, P., Volpi, G., Sonego, P., & Perris, R. (2005). Neurogenic potential of human mesenchymal stem cells revisited: analysis by immunostaining, timelapse video and microarray. Journal of Cell Science, 118, 3925–3936.

    Article  CAS  Google Scholar 

  9. Jiang, Y., Jahagirdar, B. N., Reinhardt, R. L., Schwartz, R. E., Keene, C. D., Ortiz-Gonzalez, X. R., Reyes, M., Lenvik, T., Lund, T., Blackstad, M., et al. (2002). Pluripotency of mesenchymal stem cells derived from adult marrow. Nature, 418, 41–49.

    Article  CAS  Google Scholar 

  10. Kabos, P., Ehtesham, M., Kabosova, A., Black, K. L., & Yu, J. S. (2002). Generation of neural progenitor cells from whole adult bone marrow. Experimental Neurology, 178, 288–293.

    Article  CAS  Google Scholar 

  11. T.J. Burdon, A. Paul, N. Noiseux, S. Prakash, D. Shum-Tim. (2011). Bone marrow stem cell derived paracrine factors for regenerative medicine: current perspectives and therapeutic potential. Bone Marrow Research, 207326.

  12. Cho, H., Seo, Y. K., Yoon, H. H., Kim, S. C., Kim, S. M., Song, K. Y., & Park, J. K. (2012). Neural stimulation on human bone marrow-derived mesenchymal stem cells by extremely low frequency electromagnetic fields. Biotechnology Progress, 28, 1329–1335.

    Article  CAS  Google Scholar 

  13. Cuccurazzu, B., Leone, L., Podda, M. V., Piacentini, R., Riccardi, E., Ripoli, C., Azzena, G. B., & Grassi, C. (2010). Exposure to extremely low-frequency (50 Hz) electromagnetic fields enhances adult hippocampal neurogenesis in C57BL/6 mice. Experimental Neurology, 226, 173–182.

    Article  Google Scholar 

  14. Ingber, D. E., Dike, L., Hansen, L., Karp, S., Liley, H., Maniotis, A., McNamee, H., Mooney, D., Plopper, G., Sims, J., et al. (1994). Cellular tensegrity: exploring how mechanical changes in the cytoskeleton regulate cell growth, migration, and tissue pattern during morphogenesis. International Review of Cytology, 150, 173–224.

    Article  CAS  Google Scholar 

  15. Berridge, M. J., Lipp, P., & Bootman, M. D. (2000). The versatility and universality of calcium signalling. Nature Reviews. Molecular Cell Biology, 1, 11–21.

    Article  CAS  Google Scholar 

  16. Chen, N. X., Ryder, K. D., Pavalko, F. M., Turner, C. H., Burr, D. B., Qiu, J., & Duncan, R. L. (2000). Ca2+ regulates fluid shear-induced cytoskeletal reorganization and gene expression in osteoblasts. American Journal of Physiology - Cell Physiology, 278, C989–997.

    CAS  Google Scholar 

  17. Malone, A. M., Batra, N. N., Shivaram, G., Kwon, R. Y., You, L., Kim, C. H., Rodriguez, J., Jair, K., & Jacobs, C. R. (2007). The role of actin cytoskeleton in oscillatory fluid flow-induced signaling in MC3T3-E1 osteoblasts. American Journal of Physiology - Cell Physiology, 292, C1830–1836.

    Article  CAS  Google Scholar 

  18. Myers, K. A., Rattner, J. B., Shrive, N. G., & Hart, D. A. (2007). Osteoblast-like cells and fluid flow: cytoskeleton-dependent shear sensitivity. Biochemical and Biophysical Research Communications, 364, 214–219.

    Article  CAS  Google Scholar 

  19. Safford, K. M., Hicok, K. C., Safford, S. D., Halvorsen, Y. D., Wilkison, W. O., Gimble, J. M., & Rice, H. E. (2002). Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochemical and Biophysical Research Communications, 294, 371–379.

    Article  CAS  Google Scholar 

  20. Banerjee, S., & Hasan, G. (2005). The InsP3 receptor: its role in neuronal physiology and neurodegeneration. Bioessays, 27, 1035–1047.

    Article  CAS  Google Scholar 

  21. Branchaw, J. L., Hsu, S. F., & Jackson, M. B. (1998). Membrane excitability and secretion from peptidergic nerve terminals. Cellular and Molecular Neurobiology, 18, 45–63.

    Article  CAS  Google Scholar 

  22. Munaron, L., Antoniotti, S., Fiorio Pla, A., & Lovisolo, D. (2004). Blocking Ca2+ entry: a way to control cell proliferation. Current Medicinal Chemistry, 11, 1533–1543.

    Article  CAS  Google Scholar 

  23. Bito, H., Deisseroth, K., & Tsien, R. W. (1997). Ca2 + -dependent regulation in neuronal gene expression. Current Opinion in Neurobiology, 7, 419–429.

    Article  CAS  Google Scholar 

  24. Grassi, C., D’Ascenzo, M., Torsello, A., Martinotti, G., Wolf, F., Cittadini, A., & Azzena, G. B. (2004). Effects of 50 Hz electromagnetic fi elds on voltage-gated Ca2+ channels and their role in modulation of neuroendocrine cell proliferation and death. Cell Calcium, 35, 307–315.

    Article  CAS  Google Scholar 

  25. Nicotera, P., & Orrenius, S. (1998). The role of calcium in apoptosis. Cell Calcium, 23, 173–180.

    Article  CAS  Google Scholar 

  26. Spitzer, N. C., Gu, X., & Olson, E. (1994). Action potentials, calcium transients and the control of differentiation of excitable cells. Current Opinion in Neurobiology, 4, 70–77.

    Article  CAS  Google Scholar 

  27. Meldolesi, J. (2001). Rapidly exchanging Ca2+ stores in neurons: molecular, structural and functional properties. Progress in Neurobiology, 65, 309–338.

    Article  CAS  Google Scholar 

  28. Balasubramanian, L., Ahmed, A., Lo, C. M., Sham, J. S., & Yip, K. P. (2007). Integrin-mediated mechanotransduction in renal vascular smooth muscle cells: activation of calcium sparks. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 293(4), R1586–94.

    Article  CAS  Google Scholar 

  29. Belmonte, S., & Morad, M. (2008). Shear fluid-induced Ca2+ release and the role of mitochondria in rat cardiac myocytes. Annals of the New York Academy of Sciences, 1123, 58–63.

    Article  CAS  Google Scholar 

  30. Hayakawa, K., Tatsumi, H., & Sokabe, M. (2008). Actin stress fibers transmit and focus force to activate mechanosensitive channels. Journal of Cell Science, 121(Pt 4), 496–503.

    Article  CAS  Google Scholar 

  31. Horner, V. L., & Wolfner, M. F. (2008). Mechanical stimulation by osmotic and hydrostatic pressure activates Drosophila oocytes in vitro in a calcium-dependent manner. Developmental Biology, 316(1), 100–9.

    Article  CAS  Google Scholar 

  32. Kim, T. J., Joo, C., Seong, J., Vafabakhsh, R., Botvinick, E. L., Berns, M. W., Palmer, A. E., Wang, N., Ha, T., Jakobsson, E., et al. (2015). Distinct mechanisms regulating mechanical force-induced Ca2+ signals at the plasma membrane and the ER in human MSCs. Elife, 10(4), e04876.

    Google Scholar 

  33. Patterson, R. L., Boehning, D., & Snyder, S. H. (2004). Inositol 1,4,5-trisphosphate receptors as signal integrators. Annual Review of Biochemistry, 73, 437–465.

    Article  CAS  Google Scholar 

  34. Resende, R. R., da Costa, J. L., Kihara, A. H., Adhikari, A., & Lorencon, E. (2010). Intracellular Ca2+ regulation during neuronal differentiation of murine embryonal carcinoma and mesenchymal stem cells. Stem Cells and Development, 19, 379–394.

    Article  CAS  Google Scholar 

  35. Walker, D. S., Ly, S., Lockwood, K. C., & Baylis, H. A. (2002). A direct interaction between IP3 receptors and myosin II regulates IP3 signaling in C-elegans. Current Biology, 12, 951–956.

    Article  CAS  Google Scholar 

  36. Fukatsu, K., Bannai, H., Zhang, S. B., Nakamura, H., Inoue, T., & Mikoshiba, K. (2004). Lateral diffusion of inositol 1,4,5-trisphosphate receptor type 1 is regulated by actin filaments and 4.1N in neuronal dendrites. Journal of Biological Chemistry, 279, 48976–48982.

    Article  CAS  Google Scholar 

  37. Turvey, M. R., Fogarty, K. E., & Thorn, P. (2005). Inositol (14,5)-trisphosphate receptor links to filamentous actin are important for generating local Ca2+ signals in pancreatic acinar cells. Journal of Cell Science, 118, 971–980.

    Article  CAS  Google Scholar 

  38. Berbey, C., Weiss, N., Legrand, C., & Allard, B. (2009). Transient receptor potential canonical type 1 (TRPC1) operates as a sarcoplasmic reticulum calcium leak channel in skeletal muscle. Journal of Biological Chemistry, 284, 36387–36394.

    Article  CAS  Google Scholar 

  39. Gallego-Sandin, S., Rodriguez-Garcia, A., Alonso, M. T., & Garcia-Sancho, J. (2009). The endoplasmic reticulum of dorsal root ganglion neurons contains functional TRPV1 channels. Journal of Biological Chemistry, 284, 32591–32601.

    Article  CAS  Google Scholar 

  40. Nayak, P. S., Wang, Y., Najrana, T., Priolo, L. M., Rios, M., Shaw, S. K., & Sanchez-Esteban, J. (2015). Mechanotransduction via TRPV4 regulates inflammation and differentiation in fetal mouse distal lung epithelial cells. Respiratory Research, 27(16), 60.

    Article  Google Scholar 

  41. Bidaux, G., Flourakis, M., Thebault, S., Zholos, A., Beck, B., Gkika, D., Roudbaraki, M., Bonnal, J. L., Mauroy, B., Shuba, Y., et al. (2007). Prostate cell differentiation status determines transient receptor potential melastatin member 8 channel subcellular localization and function. The Journal of Clinical Investigation, 117, 1647–1657.

    Article  CAS  Google Scholar 

  42. Koulen, P., Cai, Y. Q., Geng, L., Maeda, Y., Nishimura, S., Witzgall, R., Ehrlich, B. E., & Somlo, S. (2002). Polycystin-2 is an intracellular calcium release channel. Nature Cell Biology, 4, 191–197.

    Article  CAS  Google Scholar 

  43. Barritt, G., & Rychkov, G. (2005). TRPs as mechanosensitive channels. Nature Cell Biology, 7, 105–107.

    Article  CAS  Google Scholar 

  44. Rosen, L. B., Ginty, D. D., Weber, M. J., & Greenberg, M. E. (1994). Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras. Neuron, 12, 1207–1221.

    Article  CAS  Google Scholar 

  45. Harder, D. R., Gilbert, R., & Lombard, J. H. (1987). Vascular muscle cell depolarization and activation in renal arteries on elevation of transmural pressure. American Journal Physiology Renal Fluid Electrolyte Physiology, 253, F778–F781.

    CAS  Google Scholar 

  46. Lev, S., Moreno, H., Martinez, R., Canoll, P., Peles, E., Musacchio, J. M., Plowman, G. D., Rudy, B., & Schlessinger, J. (1995). Protein tyrosine kinase PYK2 involved in Ca(2+)-induced regulation of ion channel and MAP kinase functions. Nature, 376(6543), 737–45.

    Article  CAS  Google Scholar 

  47. Tahara, S., Fukuda, K., Kodama, H., Kato, T., Miyoshi, S., & Ogawa, S. (2001). Potassium channel blocker activates extracellular signal-regulated kinases through Pyk2 and epidermal growth factor receptor in rat cardiomyocytes. Journal of the American College of Cardiology, 38, 1554–1563.

    Article  CAS  Google Scholar 

  48. Kim, S. Y., Bae, J. C., Kim, J. Y., Lee, H. L., Lee, K. M., Kim, D. S., & Cho, H. J. (2002). Activation of p38 MAP kinase in the rat dorsal root ganglia and spinal cord following peripheral inflammation and nerve injury. Neuroreport, 13, 2483–2486.

    Article  CAS  Google Scholar 

  49. Sodhi, A., & Biswas, S. K. (2002). Monocyte chemoattractant protein-1-induced activation of p42/44 MAPK and c-Jun in murine peritoneal macrophages: a potential pathway for macrophage activation. Journal of Interferon & Cytokine Research, 22, 517–526.

    Article  CAS  Google Scholar 

  50. Jiménez-Sainz, M. C., Fast, B., Mayor, F., Jr., & Aragay, A. M. (2003). Signaling pathways for monocyte chemoattractant protein 1-mediated extracellular signal-regulated kinase activation. Molecular Pharmacology, 64, 773–782.

    Article  Google Scholar 

  51. Yao, H., Peng, F., Fan, Y., Zhu, X., Hu, G., & Buch, S. J. (2009). TRPC channel-mediated neuroprotection by PDGF involves Pyk2/ERK/CREB pathway. Cell Death and Differentiation., 16, 1681–1693.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the Pioneer Research Program of the National Research Foundation of Korea and was funded by the Ministry of Education, Science, and Technology (NRF-2009-0082941). This work was supported by a grant of the Korean Health Technology R&D Project, Ministry of Health and Welfare, Republic of Korea (No. HI13C0540).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Songhee Jeon.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Additional information

Yura Choi and Jeong-Eun Park contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, Y., Park, JE., Jeong, J.S. et al. Sound Waves Induce Neural Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells via Ryanodine Receptor-Induced Calcium Release and Pyk2 Activation. Appl Biochem Biotechnol 180, 682–694 (2016). https://doi.org/10.1007/s12010-016-2124-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2124-6

Keywords

Navigation