Skip to main content

Advertisement

Log in

Design, Synthesis and Biological Evaluation of Novel Phosphorylated Abacavir Derivatives as Antiviral Agents Against Newcastle Disease Virus Infection in Chicken

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Newcastle disease virus is the most devastating virus in poultry industry. It can eradicate the entire poultry flocks once infected. This study is aimed to investigate the antiviral efficacy of novel phosphorylated analogues of the drug abacavir (ABC) against Newcastle disease virus (NDV). About 16 analogues of ABC were designed and docking was performed against fusion protein of NDV. Three compounds were identified and selected for synthesis and biological evaluation based on binding affinity and docking scores. The compounds were synthesized and characterized by IR, 1H, 13C, 31P and CHN analysis and mass spectra. These compounds were tested for antiviral efficacy against NDV-infected DF-1 cells. Compound ABC-1 had shown potent antiviral activity as evidenced by significant reduction in plaque units and cytopathic effect. Therefore, ABC-1 was selected to test for NDV-infected chicken survival rate. Effective dose50 concentrations were determined for ABC-1. Antioxidant enzyme levels in brain, liver and lung tissues were estimated. Superoxide dismutase and catalase were significantly raised and lipid peroxidation and HA titer levels were decreased upon treatment with 2 mg/kg body weight ABC-1. Histopathological modifications were also restored in the ABC-1-treated group. These findings demonstrated ABC-1 as a potential antiviral agent against NDV in chicken.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Alexander, D. J. (2001). Newcastle disease. British Poultry Science, 42, 5–22.

    Article  CAS  Google Scholar 

  2. Mayo, M. A. (2002). A summary of taxonomic changes recently approved by ICTV. Archives of Virology, 147, 1655–1663.

    Article  CAS  Google Scholar 

  3. Steward, M., Vipond, I. B., Millar, N. S., & Emmerson, P. T. (1993). RNA editing in Newcastle disease virus. Journal of General Virology, 74, 2539–2547.

    Article  CAS  Google Scholar 

  4. Brown, C., King, D. J., & Seal, B. S. (1999). Pathogenesis of Newcastle disease in chickens experimentally infected with viruses of different virulence. Veterinary Pathology, 36, 125–132.

    Article  CAS  Google Scholar 

  5. Faletto, M. B., Miller, W. H., Garvey, E. P., St Clair, M. H., Daluge, S. M., & Good, S. S. (1997). Unique intracellular activation of the potent anti-human immunodeficiency virus agent 1592U89. Antimicrobial Agents and Chemotherapy, 41, 1099–1107.

    CAS  Google Scholar 

  6. Mocarski, E. S., Shonk, T., Griffiths, P. D., & Pass, R. F. (2003). Cytomegaloviruses. In D. M. Knipe et al. (Eds.), Fields virology (pp. 1960–2014). Philadelphia: Lippincott Williams and Wilkins.

    Google Scholar 

  7. Hitchcock, M. J. M. (1993). In vitro antiviral activity of didanosine compound with that of other dideoxynucleoside analogues against laboratory strains and clinical isolates of Human Immunodeficiency virus. Clinical Infections Diseases, 16, 516–521.

    Google Scholar 

  8. Daluge, S. M., Good, S. S., & Faletto, M. B. (1997). A novel carbocyclic nucleoside analog with potent, selective antihuman immunodeficiency virus activity. Antimicrobial Agents and Chemotherapy, 41, 1082–1093.

    CAS  Google Scholar 

  9. Geetha, S., Emmanuel, F. M., & Rodger, D. M. (2010). Abacavir/Lamividine combination in the treatment of HIV: a review. Therapeutics and Clinical Risk Management, 6, 83–94.

    Google Scholar 

  10. Kesharwani, R. K., Srivastava, V., Singh, P., Rizvi, S. I., Adeppa, K., & Misra, K. (2015). A novel approach for overcoming drug resistance in breast cancer chemotherapy by targeting new synthetic curcumin analogues against aldehyde dehydrogenase 1 (ALDH1A1) and glycogen synthase kinase-3 β (GSK-3β). Applied Biochemistry and Biotechnology, 176, 1996–2017.

    Article  CAS  Google Scholar 

  11. Balzarini, J., Stefano, A., Alshaimaa, H. A., Susan, M. D., Carlo-Federico, P., & Chris, M. (2004). Improved antiviral activity of the aryloxymethoxyalaninyl phosphoramidate (APA) prodrug of abacavir (ABC) is due to the formation of markedly increased carbovir 50-triphosphate metabolite levels. FEBS Letters, 573, 38–44.

    Article  CAS  Google Scholar 

  12. Youcef, M., Jan, B., & Christopher, M. (2009). Aryloxy phosphoramidate triesters: a technology for delivering monophosphorylated nucleosides and sugars into cells. ChemMedChem, 4, 1779–1791.

    Article  Google Scholar 

  13. Rao, V. K., Reddy, S. S., Krishna, S. B., Reddy, S. C., Reddy, P. N., Reddy, C. M. T., Raju, C. N., & Ghosh, S. K. (2011). Design, synthesis and anti colon cancer activity evaluation of phosphorylated derivatives of Lamivudine (3TC). Letters in Drug Design & Discovery, 8, 59–64.

    Article  CAS  Google Scholar 

  14. Chandra Sekhar, K., Janardhan, A., Nanda Kumar, Y., Narasimha, G., Naga Raju, C., & Ghosh, S. K. (2014). Amino acid esters substituted phosphorylated emtricitabine and didanosine derivatives as antiviral and anticancer agents. Applied Biochemistry and Biotechnology, 173, 1303–1318.

    Article  Google Scholar 

  15. Friesner, R. A., Banks, J. L., Murphy, R. B., Halgren, T. A., Klicic, J. J., Mainz, D. T., Repasky, M. P., Knoll, E. H., Shelley, M., Perry, J. K., Shaw, D. E., Francis, P., & Shenkin, P. S. (2004). Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. Journal of Medicinal Chemistry, 47, 1739–1749.

    Article  CAS  Google Scholar 

  16. Bernstein, F. C., Koetzle, T. F., Williams, G. J. B., Meyer, E. F., Jr., Brice, M. D., Rodgers, J. R., Kennard, O., Shimanouchi, T., & Tasumi, M. (1978). The protein data bank: a computer-based archival file for macromolecular structures. Archives of Biochemistry and Biophysics, 185, 584–591.

  17. Chen, L., Gorman, J. J., McKimm-Breschkin, J., Lawrence, L. J., Tulloch, P. A., Smith, B. J., Colman, P. M., & Lawrence, M. C. (2001). The structure of the fusion glycoprotein of Newcastle disease virus suggests a novel paradigm for the molecular mechanism of membrane fusion. Structure, 9, 255–266.

    Article  CAS  Google Scholar 

  18. Scudiero, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., Currens, M. J., Seniff, D., & Boyd, M. R. (1988). Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Research, 48, 4827–4833.

    CAS  Google Scholar 

  19. Reed, L. J., & Muench, H. (1928). A simple method of estimating fifty percent endpoints. American Journal of Hygiene, 27, 493–497.

    Google Scholar 

  20. Shin-Ru, S., Tzu-Yun, C., Gadarla, R. R., Sung-Nain, T., Hsiun-Ling, C., Wen-Fang, T., Ming-sian, W., Jiann-Yih, Y., Yu-Sheng, C., John, T. A. H., Hsing-Pang, H., & Jim-Tong, H. (2010). Pyrazole compound BPR1P0034 with poten and selective anti-influenza virus activity. Journal of Biomedical Science, 17, 13–22.

    Article  Google Scholar 

  21. Sardjono, B. (1989). Plaque assay of Newcastle disease virus. Bul Penelit Kesehat, 17, 207–215.

    Google Scholar 

  22. Miller, L. C., & Tainter, M. L. (1944). Estimation of LD50 and its error by means of log-probit graph paper. Proceedings of the Society for Experimental Biology and Medicine, 57, 261–269.

    Article  CAS  Google Scholar 

  23. Cunningham, C.H. (1966). Quantitative methods. In A laboratory guide in virology, 5th ed. Minnesota: Burgess publishing company.

  24. Hiroshi, O., Ohishi, N., & Yagi, K. (1979). Assay of lipid peroxides in animal tissues by thiobarbituric acid reaction. Analytical Biochemistry, 95, 351–358.

    Article  Google Scholar 

  25. Misra, H. P., & Fridovich, I. (1972). The role of superoxide anion in the auto-oxidation of epinephrine and a simple assay for superoxide dismutase. Journal of Biological Chemistry, 247, 3170–3175.

    CAS  Google Scholar 

  26. Aebi, H., & Packer, L. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

  27. Slaoui, M., & Fiette, L. (2011). Histopathology procedures: from tissue sampling to histopathological evaluation. Methods in Molecular Biology, 691, 69–82.

    Article  CAS  Google Scholar 

  28. Lowry, O. H., Rosenbrough, N., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry, 193, 265–275.

    CAS  Google Scholar 

  29. Thomas, L. C. (1974). Interpretation of the infrared spectra of organophosphorus compounds. London: Hyden & Son Ltd.

    Google Scholar 

  30. Cristopher, M. C., Harris, S. A., Daluge, M., Gudmundsson, K. S., McLean, E. W., Burnette, T. C., Marr, H., Hazen, R., Condreay, L. D., Johnson, L., De Clercq, E., & Balzarini, J. (2005). Application of phosphoramidate pronucleotide technology to abacavir leads to a significant enhancement of antiviral potency. Journal of Medicinal Chemistry, 48, 3504–3515.

    Article  Google Scholar 

  31. Rao, V. K., Sanapalli, S. R., Raveendra, K. B., Hema Kumar, K., Ghosh, S. K., & NagaRaju, C. (2011). Synthesis and cytotoxicity evaluation of phosphorylated derivatives of ribavirin. Journal of the Korean Chemical Society, 55, 952–959.

    Article  CAS  Google Scholar 

  32. Thangaraj, S., Sundaraj, R., Dhanapal, D., Jebamalai, R. A., Selvaraj, A., & Velliyur, K. G. (2011). Molecular docking and QSAR studies on plant derived bioactive compounds as potent inhibitors of DEK oncoprotein. Asian Journal of Pharmaceutical and Clinical Research, 4, 67–71.

    CAS  Google Scholar 

  33. Anna, M. A., Marco, T., & Antonino, L. A. (2009). QSAR study investigating the potential anti-HIV-1 effect of some acyclovir and Ganciclovir analogs. Arkivoc, 8, 85–94.

    Google Scholar 

  34. Sriram, D., Perumal, Y., Naga, S. M., & Vivek, S. (2006). Abacavir prodrugs: microwave-assisted synthesis and their evaluation of anti-HIV activities. Bioorganic & Medicinal Chemistry Letters, 16, 2127–2129.

    Article  CAS  Google Scholar 

  35. Yingjie, S., Shengqing, Y., Ding, N., Chunchun, M., Songshu, M., Shilei, Z., Yuan, Z., Xusheng, Q., Lei, T., Hongjun, C., Cuiping, S., & Chan, D. (2013). Autophagy benefits the replication of Newcastle disease virus in chicken cells and tissues. Journal of Virology, 88, 525–537.

    Google Scholar 

  36. Boriskin, Y. S., Leneva, I. A., Pécheur, E. I., & Polyak, S. J. (2008). Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Current Medicinal Chemistry, 15, 997–1005.

  37. Kin, K. L., Nam, N. C., Fang, Y., Jun, D., Li, L., Zhiwei, C., Kong, H. S., Hong, L. C., Kwok, Y. Y., & Richard, Y. T. K. (2015). Identification of novel fusion inhibitors of influenza a virus by chemical genetics. Journal of Virology, 90, 2690–2701.

    Google Scholar 

  38. Ravendra, K. B., Valasani, K. R., Yellapu, N. K., Kishore, P., Kadiam, V. S., Matcha, B., Lokanatha, V., & Naga Raju, C. (2012). Identification of substituted [3, 2-a] pyrimidines as selective antiviral agents: molecular modeling study. Antiviral Research, 95, 118–127.

    Article  Google Scholar 

  39. Tong, O., Xiao-Ying, L., Li-Bo, H., Feng-Jian, Z., & Qi-Ya, Z. (2014). Development of an Ussuri catfish Pseudobagrus ussuriensis skin cell line displaying differential cytopathic effects to three aquatic animal viruses. Virus Research, 189, 56–62.

    Article  Google Scholar 

  40. Sharma, C. S., Nema, R. K., Sharma, V. K., & Meyyanathan, S. N. (2009). Synthesis and antiviral activity of some novel diazabicyclo compounds. International Journal of ChemTech Research, 1, 764–768.

    CAS  Google Scholar 

  41. Elizondo, R. G., Elizabeth, L. C. S., Denis, R. M., Edgar, M. G., Cristina, R. P., & Laura, M. T. (2012). In vitro characterization of the antiviral activity of fucoidan from Cladosiphon okamuranus against Newcastle Disease Virus. Virology Journal, 9, 307–315.

    Article  Google Scholar 

  42. Balzarini, J., Friederike, H. M., Erik, D. C., & Chris, M. (2001). Antiviral activity of cyclosaligenyl prodrugs of acyclovir, carbovir and abacavir. Antiviral Chemistry & Chemotherapy, 12, 301–306.

    Article  CAS  Google Scholar 

  43. Proctor, H. P. (1989) Free radicals and human disease: CRC handbook of free radicals and antioxidants. 1: pp. 209–221.

  44. Venkata Subbaiah, K. C., Raniprameela, D., Visweswari, G., Rajendra, W., & Lokanatha, V. (2011). Perturbations in the antioxidant metabolism during Newcastle disease virus (NDV) infection in chicken. Naturwissenschaften, 98, 1019–1026.

    Article  Google Scholar 

  45. Khalid, R. (2007). Studies on free radicals, antioxidants, and co-factors. Clinical Interventions in Aging, 2, 219–236.

    Google Scholar 

Download references

Acknowledgments

Dr. Lokanatha Valluru is highly thankful to SERB (No. SR/SO/AS-021/2013 dt.29.11.2013), New Delhi, for providing financial assistance in the form of research grant. We are also thankful to Palamur Bioscience, Mahaboobnagar, for providing the cell culture facility and Dr. D. Raniprameela, S.V. Veterinary University, Tirupati, for providing the NDV inoculum.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lokanatha Valluru.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Spectroscopic data for synthesized compounds IR, NMR (1H, 13C, 31P), mass spectral data and elemental analysis.

ESM 1

(DOCX 123 kb)

ESM 2

(DOCX 336 kb)

ESM 3

(DOCX 242 kb)

ESM 4

(DOCX 261 kb)

ESM 5

(DOCX 272 kb)

ESM 6

(DOCX 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

K. A., S., Venkata Subbaiah, K.C., Lavanya, R. et al. Design, Synthesis and Biological Evaluation of Novel Phosphorylated Abacavir Derivatives as Antiviral Agents Against Newcastle Disease Virus Infection in Chicken. Appl Biochem Biotechnol 180, 361–381 (2016). https://doi.org/10.1007/s12010-016-2104-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2104-x

Keywords

Navigation