Skip to main content
Log in

Effect of Processing and Storage Methods on the Nutritional, Anti-nutritional, and Anti-oxidant Properties of Paeonia emodi, Wall. ex. Royle

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Nutritional, anti-nutritional, and anti-mutagenic activities of the fresh and boiled Paeonia emodi leaves were analyzed. Significantly higher vitamin A (64.19 ± 0.18 mg/100 g), C (160.50 ± 1.85 mg/100 g), and E (1.25 ± 0.00 μg/g) contents were recorded in boiled as compared to fresh and dried juvenile leaves. Similarly, significantly higher protein content (329.63 ± 0.33 mg/100 g) was found in boiled budding leaves, carbohydrate content in fresh juvenile (0.353 ± 0.02) and mature leaves (0.353±0.10 mg/g) , methionine content (47.75 ± 0.09 mg/g) in dried budding stage leaves, and proline content (1.23 ± 0.12 μM/g) in dried mature leaves. Anti-nutritional attributes like phytic acid (250.17 ± 0.19 mg/100 g; p < 0.05) and total tannins (48.41 ± 0.09 mg/g) were significantly higher in dried and fresh budding leaves, respectively; however, trypsin inhibition activity (91.90 ± 0.34 %) was observed in dried juvenile leaves. Significantly higher 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging activity (71.13 ± 0.09 mM AAE/100 g) and ferric-reducing antioxidant power (FRAP) activity (3.39 ± 0.01 mM AAE/100 g) were recorded higher in dried budding leaves. On the other hand, 2,2-diphenyl-1-picryylhydrazyl (DPPH) free radical scavenging assay (3.55 ± 0.017 mM AAE/100 g) and OH ions (1.69 ± 0.01 mM AAE/100 g) were significantly higher in boiled juvenile leaves and dried mature leaves, respectively. Anti-mutagenic activity of P. emodi extract revealed varying levels of protection against DNA damaging agents. The aqueous extract of P. emodi at budding leaves (500 μg dried) showed comparatively better protective activity as compared to other growth stages. Results of this investigation indicated that the species have nutritional and medicinal value and therefore can be a potential source for nutraceutical and pharmaceutical industries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Khan, T., Ahmad, M., Nisar, M., Ahmad, M., Lodhi, M. A., & Choudhary, M. I. (2005). Enzyme inhibition and radical scavenging activities of aerial parts of Paeonia emodi Wall. (Paeoniaceae). Journal of Enzyme Inhibition and Medicinal Chemistry, 20, 245–249.

    Article  CAS  Google Scholar 

  2. Gaur, R. D. (1999). Flora of the district Garhwal North West Himalaya with ethnobotanical note. Srinagar, Garhwal, India: Transmedia.

    Google Scholar 

  3. Zhao, X., Zhou, Z. Q., Lin, Q. B., Pan, K. Y., & Li, M. Y. (2008). Phylogenetic analysis of Paeonia sect. Moutan (Paeoniaceae) based on multiple DNA fragments and morphological data. Journal of Systematics and Evolution, 46, 563–572.

    Google Scholar 

  4. Shinwari, Z. K., Khan, A. A., & Nakaike, T. (2003). Medicinal and other useful plants of district Swat Pakistan. Peshawar, Pakistan: Al Aziz Communications.

    Google Scholar 

  5. Ghayur, M. N., Gilani, A. H., Rasheeda, H., Khan, A., Iqbal, Z., Ismail, M., Saeed, S. A., & Janssen, L. J. (2008). Cardiovascular and airway relaxant activities of paeony root extract. Canadian Journal of Physiology and Pharmacology, 86, 793–803.

    Article  CAS  Google Scholar 

  6. Dhyani, D., Maikhuri, R. K., Rao, K. S., Kumar, L., Purohit, V. K., Sundriyal, M., & Saxena, K. G. (2007). Basic nutritional attributes of Hippophae rhamnoides (Seabuckthorn) populations from Uttarakhand Himalaya, India. Current Science, 92, 1148–1152.

    CAS  Google Scholar 

  7. Dhar, P., Tayade, A. B., Kumar, J., Chaurasia, O. P., Srivastava, R. B., & Singh, S. B. (2013). Nutritional profile of phytococktail from trans-Himalayan plants. PLoS One, 8, e83008. doi:10.1371/journal.pone.0083008.

    Article  Google Scholar 

  8. Bhatt, B. P., Singh, K., & Singh, A. (2005). Nutritional values of some commercial edible bamboo species of the North Eastern Himalayan region, India. Journal of Bamboo and Rattan, 4, 111–124.

    Article  Google Scholar 

  9. Sundriyal, M., & Sundriyal, R. C. (2003). Underutilized edible plants of the Sikkim Himalaya: need for domestication. Current Science, 85, 731–736.

    Google Scholar 

  10. Rawat, S., Andola, H., Giri, L., Dhyani, P., Jugran, A., Bhatt, I. D., & Rawal, R. S. (2014). Assessment of nutritional and antioxidant potential of selected vitality strengthening himalayan medicinal plants. International Journal of Food Properties, 17, 703–712.

    Article  CAS  Google Scholar 

  11. Rawat, S., Jugran, A, Giri, L., Bhatt, I.D., & Rawal, R.S. (2011) Assessment of antioxidant properties in fruits of Myrica esculenta: A popular wild edible species in Indian Himalayan Region. Evidence Complementary and Alternative medicine ID 512787.

  12. Andola, H. C., Rawal, R. S., & Bhatt, I. D. (2011). Comparative studies on the nutritive and anti-nutritive properties of fruits in selected Berberis species of West Himalaya, India. Food Research International, 44, 2352–2356.

    Article  CAS  Google Scholar 

  13. Bhatt, I. D., Dauthal, P., Rawat, S., Gaira, K. S., Jugran, A., Rawal, R. S., & Dhar, U. (2012). Characterization of essential oil composition, phenolic content, and antioxidant properties in wild and planted individuals of Valeriana jatamansi Jones. Scientia Horticulture, 136, 61–68.

    Article  CAS  Google Scholar 

  14. Jugran, A., Rawat, S., Dauthal, P., Mondal, S., Bhatt, I. D., & Rawal, R. S. (2013). Association of ISSR markers with some biochemical traits of Valeriana jatamansi Jones. Industrial Crops and Products, 44, 671–676.

    Article  CAS  Google Scholar 

  15. Jugran, A. K., Bahukhandi, A., Bhatt, I. D., Rawal, R. S., & Nandi, S. K. (2015). H2O2 induced DNA damage preventive activity of selected Valeriana species from West Himalaya. Proceedings of National Academy Science B: Biological Science. doi:10.1007/s40011-015-0559-0.

    Google Scholar 

  16. Jugran, A. K., Bhatt, I. D., & Rawal, R. S. (2015). Identification of ISSR markers associated with valerenic acid and antioxidant activity in Valeriana jatamansi Jones in Western Himalaya. Molecular Breeding, 35, 73. doi:10.1007/s11032-015-0241-5.

    Article  Google Scholar 

  17. Jugran, A. K., Bahukhandi, A., Dhyani, P., Bhatt, I. D., Rawal, R. S., & Nandi, S. K. (2016). Impact of altitudes and habitats on valerenic acid, total phenolics, flavonoids, tannins, and antioxidant activity of Valeriana jatamansi. Applied Biochemistry and Biotechnology. doi:10.1007/s12010-016-2039-2.

    Google Scholar 

  18. Bradford, N. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  19. Jugran, A., Bhatt, I. D., & Rawal, R. S. (2010). Characterization of different rice varieties of Himalayan region by SDS-PAGE. Rice Science, 17, 122–128.

    Article  Google Scholar 

  20. Hedge, J. E., & Hofreiter, B. T. (1962). Carbohydrates chemistry. Ed. 17. New York: Academic.

    Google Scholar 

  21. Bates, L. S., Wadern, R. P., & Teare, I. D. (1973). Rapid estimation of free proline for water stress determination. Plant and Soil, 39, 205–207.

    Article  CAS  Google Scholar 

  22. Csonka, F. A., & Denton, C. A. (1946). Methionine determination in proteins and foods. Bureau of human nutrition and home economics and the bureau of animal industry. Washington: Agricultural Research Administration, United States Department of Agriculture.

    Google Scholar 

  23. Roe, B., & Bruemmer, J.H. (1974) Estimation of ascorbic acid in orange juice by a chronometric method. Florida State Horticultural Society, 1974.

  24. Martinek, R. G. (1964). Method for the determination of vitamin E (tocopherols) in serum. Clinical Chemistry, 10, 1078–1086.

    CAS  Google Scholar 

  25. Nwinuka, N., Ibeh, G., & Ekeke, G. (2005). Proximate composition and levels of some toxicants in four commonly consumed spices. Journal of Applied Science Environment and Management, 9, 150–155.

    Google Scholar 

  26. Kakade, M. L., Rackis, J. J., McGhee, J. E., & Puski, G. (1974). Determination of trypsin inhibitor activity of soy products: a collaborative analysis of an improved procedure. Cereal Chemistry, 51, 376–382.

    CAS  Google Scholar 

  27. Halliwell, B. (1991). Reactive oxygen species in living systems; source, biochemistry and role in human disease. American Journal of Medicine, 91, 14.

    Article  Google Scholar 

  28. Marwah, R. G., Fatope, M. O., Mahrooqi, R. A., Varma, G. B., Abadi, H. A., & Al-Burtamani, S. K. S. (2007). Antioxidant capacity of some edible and wound healing plants in Oman. Food Chemistry, 101, 465–470.

    Article  CAS  Google Scholar 

  29. Mishra, S., Maikhuri, R. K., Kala, C. P., Rao, K. S., & Saxena, K. G. (2008). Wild leafy vegetables: a study of their subsistence dietetic support to the inhabitants of Nanda Devi Biosphere Reserve, India. Journal of Ethnobiology and Ethnomedicine, 4, 15. doi:10.1186/1746-4269-4-15.

    Article  Google Scholar 

  30. Agrahar-Murugkar, G., & Subbulakshmi, D. (2005). Nutritional value of edible wild mushrooms collected from the Khasi hills of Meghalaya. Food Chemistry, 89, 599–603.

    Article  CAS  Google Scholar 

  31. Sudheep, N. M., & Sridhar, K. R. (2014). Nutritional composition of two wild mushrooms consumed by the tribals of the Western Ghats of India. Mycology, 5, 64–72.

    Article  Google Scholar 

  32. Kumari, D., Reddy, M. S., & Upadhyay, R. C. (2011). Nutritional composition and antioxidant activities of 18 different wild Cantharellus mushrooms of northwestern Himalayas. Food Science and Technology International, 17, 557–567.

    Article  CAS  Google Scholar 

  33. Khan, T., Ahmad, M., Khan, H., & Khan, A. M. (2005). Biological activities of aerial parts of Paeonia emodi Wall. African Journal Biotechnology, 4, 1313–1316.

    Google Scholar 

  34. Vadive, V., & Janardhanan, K. (2005). Nutritional and anti-nutritional characteristics of seven South Indian wild legumes. Plant Food and Human Nutrition, 60, 69–75.

    Article  Google Scholar 

  35. Barbeau, W. E., & Hilu, K. W. (1993). Protein, calcium, iron, and amino acid content of selected wild and domesticated cultivars of finger millet. Plant Food and Human Nutrition, 43, 97–104.

    Article  CAS  Google Scholar 

  36. Bognar, A. (1989). Untersuchungen uber den Einfluss der Temperaturund Verpackung auf den Genuss- und Nahrwert von frischem Gemuse und Obst bei der Lagerung im Kuhlschrank. Ernährungs Umschau, 36, 254–263.

    Google Scholar 

  37. Eitenmiller, R. R., & Landen, W. O. (1999). Vitamin analysis for the health and food sciences (pp. 223–270). Boca Raton: CRC Press.

    Google Scholar 

  38. Loh, S. (2004). Bewertung des Einflusses verschiedener Garverfahren auf die sensorische und erna¨hrungsphysiologische Qualitat von frischen und TK-Gemüsen anhand ausgewä hlter Parameter. Gottingen: Cuvillier.

    Google Scholar 

  39. El-Ishaq, A., & Obirinakem, S. (2015). Effect of temperature and storage on vitamin C content in fruits juice. International Journal of Chemical and Biomolecular Science, 1, 17–21.

    Google Scholar 

  40. Fukushima, D. (2000). Soybean processing. In S. Nakai & H. W. Modler (Eds.), Food protein: processing applications (pp. 309–442). New York and Tronto: Wiley VCH Inc.

    Google Scholar 

  41. Hassan El, N. M., Hamed, S. Y., Hassan, A. B., Eltayeb, M. M., & Babiker, E. E. (2008). Nutritional evaluation and physiochemical properties of boiled and fried tree locust. Pakistan Journal of Nutrition, 7, 325–329.

    Article  Google Scholar 

  42. Sagar, V. R., & Suresh Kumar, P. (2010). Recent advances in drying and dehydration of fruits and vegetables: a review. Journal of Food Science Technology, 47, 15–26.

    Article  CAS  Google Scholar 

  43. Tsado, A. N., Lawal, B., Santali, E. S., Shaba, A. M., Chirama, D. N., Balarabe, M. M., Jiya, A. G., & Alkali, H. A. (2015). Effect of different processing methods on nutritional composition of Bitter Leaf (Vernonia amygdalina). IOSR Journal of Pharmacy, 5, 8–14.

    CAS  Google Scholar 

  44. Iijeh, I., Ejike, C. E., Nkwonta, O. M., & Njoku, B. (2010). Effect of traditional processing techniques on the nutritional and phytochemical composition of African bread-fruit (Treculia africana) seeds. Journal of Applied Science Environment and Management, 14, 169–173.

    Google Scholar 

  45. Egerg, K., Arson, A., & Etok, F. (1977). Semi-automated method for the fluorometric determination of total vitamin C in food product. Journal Association of official Analytical Chemists, 60, 126–131.

    Google Scholar 

  46. Komolafe, E.A. & Obayanju, V.S. (2003) Principle of food processing and preservation. 1st Edn. Double Birth Publishers, pp: 87.

  47. van Loon, L. C., Rep, M., & Pieterse, C. M. J. (2006). Significance of inducible defense-related proteins in infected plants. Annual Review of Phytopathology, 44, 135–162.

    Article  Google Scholar 

  48. Sadik, N. (1991). Population growth and food crises. Nutritional and Agricultural journal, 1, 2–6.

    Google Scholar 

  49. Adebowale, K. O., Nwokocha, L. M., & Agbaje, W. B. (2013). Composition of Cissus populnea stem. Journal of Food Composition and Analysis, 30, 41–46.

    Article  CAS  Google Scholar 

  50. Brayant, J. P., Reichardt, P., & Clausen, B. (1992). Chemically mediated interactions between woody plants and browsing mammals. Journal of Range Management, 45, 18–24.

    Article  Google Scholar 

  51. Mubarak, A. E. (2005). Nutritional composition and anti-nutritional factors of mung bean seeds (Phaseolus aureus) as affected by some home traditional processes. Food Chemistry, 89, 489–495.

    Article  CAS  Google Scholar 

  52. Udensi, E. A., Ekwu, F. C., & Isinguzo, J. N. (2007). Anti-nutrient factors of vegetable cowpea (Sesquipedalis) seeds during thermal processing. Pakistan Journal of Nutrition, 6, 194–197.

    Article  Google Scholar 

  53. Fagbemi, T. N., Oshodi, A. A., & Ipinmoroti, K. O. (2006). Processing effect of some anti-nutritional factors and in vitro multienzyme protein digestibility (IVPD) of three tropical seeds: breadnut (Artocarpus altilis), cashewnut (Anacardium occidentale) and fluted pumpkin (Telfairia occidentalis). Pakistan Journal of Botany, 4, 250–256.

    Google Scholar 

  54. Shishodia, S., Adams, L., Bhatt, I. D., & Aggarwal, B. B. (2006). Cancer I: anticancer potential of pomegranate. In Pomegranates, ancient roots to modern medicine (pp. 107–116). New York: Taylor & Francis.

    Google Scholar 

  55. Sharad, V. (2016). Effect of initial temperature treatment on phytochemicals and antioxidant activity of Azadirachta indica A. Juss. Applied Biochemistry and Biotechnology, 178, 504–512.

    Article  Google Scholar 

  56. Uddin, G., Sadat, A., & Siddiqui, B. S. (2013). Phytochemical screening, In vitro antioxidant and antimicrobial activities of the crude fractions of Paeonia emodi wall. Ex Royle. Middle-East Journal of Scientific Research, 17, 367–373.

    Google Scholar 

  57. Vertuani, S., Angusti, A., & Manfredini, S. (2004). The antioxidants and pro-antioxidants network: an overview. Current Pharmaceutical Design, 10, 1677–1694.

    Article  CAS  Google Scholar 

  58. Sonntag, C. V. (1987). Pulse radiolysis of nucleic acids and their base constituents: an updating review. International Journal of Radiation Applications Instrumentation. Part C. Radiation Physics and Chemistry, 30, 313–330.

    Article  Google Scholar 

Download references

Acknowledgments

All colleagues of the Environmental Physiology and Biodiversity Conservation and Management Theme are thanked for their cooperation and help during the study. Partial financial support from the Ministry of Environment and Forests, GOI, for in-house project (No. 8—GBPIHED) and the Science and Engineering Research Board, Department of Science and Technology (DST No. SB/YS/LS-162/262), New Delhi, is duly acknowledged. All the authors declare no conflicts of interest in this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Indra D. Bhatt.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jugran, A.K., Chaudhary, W.Y., Bahukhandi, A. et al. Effect of Processing and Storage Methods on the Nutritional, Anti-nutritional, and Anti-oxidant Properties of Paeonia emodi, Wall. ex. Royle. Appl Biochem Biotechnol 180, 322–337 (2016). https://doi.org/10.1007/s12010-016-2101-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2101-0

Keywords

Navigation