Skip to main content
Log in

Antimicrobial Potential of Callistemon lanceolatus Seed Extract and its Statistical Optimization

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

Plants have always been eminent source of medicinal products. Screening of the aqueous seeds extract of Callistemon lanceolatus (bottle brush) revealed its broad spectrum antimicrobial potential with an inhibition zone ranging from 13 to 28 mm against various pathogenic microorganisms. While optimizing the different parameters the antimicrobial activity was better expressed at 15 % concentration, prepared by extracting the material at 60 °C for 20 min. The extract was filtered through muslin cloth and gave best results at its natural pH. Statistical optimization by Response surface methodology enhanced the antimicrobial activity up to 1.6-fold. Minimum inhibitory concentration values of the aqueous extract of seeds of C. lanceolatus against different organisms ranged from 1–5 mg/ml. The viable cell count studies indicated a bactericidal effect against most of the pathogens. The aqueous extract was found to be relatively thermostable at 100 °C. When treated for shelf life at ambient conditions and refrigeration temperature (2–8 °C), the latter only showed a 28 % loss in antimicrobial activity. The aqueous extract was found to be biosafe when evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide reagent (MTT toxicity) assay and Ames mutagenicity assay.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Gould, I. M. (2008). The epidemiology of antibiotic resistance. International Journal of Antimicrobial Agents, 32, S2–S9.

    Article  CAS  Google Scholar 

  2. Obagwu, J., & Korsten, L. (2003). Control of citrus green and blue molds with garlic extracts. European Journal of Plant Pathology, 109(3), 221–225.

    Article  CAS  Google Scholar 

  3. Kim, J. H., Kim, J. E., Bu, H. J., & Lee, N. H. (2012). A new dioleate compound from Callistemon lanceolatus. Bulletin of Korean Chemistry Society, 33(1), 344–346.

    Article  CAS  Google Scholar 

  4. Singh, S. (2014). Genus Callistemon: an update review. World Journal of Pharmacy and Pharmaceutical Sciences, 3(7), 291–307.

    CAS  Google Scholar 

  5. Wheeler, G. S. (2005). Maintenance of a narrow host range by Oxypos vitiosa: a biological control agent of Melaleuca. Biochemical Systematics and Ecology, 33, 365–383.

  6. Burchett, M., Mousine, R., & Tarran, J. (2002). Phytomonitoring for urban environmental management. In Air Pollution and Plant Biotechnology (pp. 61–91). Springer Japan.

  7. Seyydnejad, S. M., Niknejad, M., Darabpoor, I., & Motamedi, H. (2010). Antibacterial activity of hydroalcoholic extract of Callistemon citrinus and Albizia lebbeck. American Journal of Applied Sciences, 7(1), 13.

    Article  CAS  Google Scholar 

  8. Jazet, P. M., Tatsadjieu, L. N., Ndongson, B. D., Kuate, J., Amvam, Z. P. H., & Menut, C. (2009). Correlation between chemical composition and antifungal properties of essential oils of Callistemon rigidus and Callistemon citrinus of Cameroon against Phaeoramularia angolensis. Journal of Medicinal Plants Research, 3(1), 9–15.

    Article  CAS  Google Scholar 

  9. Zayad, N., & Aly, H. F. (2012). Induced changes in the fatty acid profile of Biomphalaria alexandrina molluscan host to Shistosoma mansoni using two sublethal concentrations of selected plant molluscicides. Journal of Applied Science Research, 8(7), 3103–3111.

  10. Kim, J. H., Byun, J. C., Bandi, A. K. R., Hyun, C. G., & Lee, N. H. (2009). Compounds with elastase inhibition and free radical scavenging activities from Callistemon lanceolatus. Journal of Medicinal Plant Research, 3(11), 914–920.

    CAS  Google Scholar 

  11. Shukla, R., Singh, P., Prakash, B., & Dubey, N. K. (2012). Antifungal, aflatoxin inhibition and antioxidant activity of Callistemon lanceolatus (Sm.) Sweet essential oil and its major component 1, 8-cineole against fungal isolates from chickpea seeds. Food Control, 25(1), 27–33.

    Article  CAS  Google Scholar 

  12. Jain, A. K., Dubey, S. K., Sikarwar, M. S., & Jain, S. K. (2007). Hepatoprotective activity of methanolic extract of leaves of Callistemon lanceolatus. International Journal of Plant Science, 2(2), 185–186.

    Google Scholar 

  13. Chistokhodova, N., Nguyen, C., Calvino, T., Kachirskaia, I., Cunningham, G., & Miles, D. H. (2002). Antithrombin activity of medicinal plants from central Florida. Journal of Ethnopharmacology, 81(2), 277–280.

    Article  Google Scholar 

  14. Kumar, S., Kumar, V., & Prakash, O. M. (2011). Pharmacological evaluation of fractioned extract of Callistemon lanceolatus for antidiabetic and hypolipidemic activities in diabetic rats. Journal of Pharmacy and Allied Health Sciences, 1(2), 58–63.

    Article  Google Scholar 

  15. Firoz, M., Bharatesh, K., Nilesh, P., Vijay, G., Tabassum, S., & Nilofar, N. (2011). Cardioprotective activity of ethanolic extract of Callistemon lanceolatus leaves on doxorubicin-induced cardiomyopathy in rats. Bangladesh Journal of Pharmacology, 6(1), 38–45.

    Article  Google Scholar 

  16. Singh, S., & Shiva. (2013). In vitro anthelmintic activity of stem bark and seed capsules of Callistemon lanceolatus (Sm.) sweet. Der Pharmacia Sinica, 4(4), 97–102.

    Google Scholar 

  17. Sood, H., Kaur, H., & Arora, D. S. (2015). Statistical optimization of physiochemical parameters for enhancing the antimicrobial potential of lodhra (Symplocos racemosa) bark and its biosafety evaluation. International Journal of Pharmacy, 5(3), 852–866.

    CAS  Google Scholar 

  18. Arora, D. S., & Onsare, J. G. (2014). In vitro antimicrobial evaluation and phytoconstituents of Moringa oleifera pod husks. Industrial Crops and Products, 52, 125–135.

    Article  CAS  Google Scholar 

  19. Katapodis, P., Christakopoulou, V., Kekos, D., & Christakopoulos, P. (2007). Optimization of xylanase production by Chaetomium thermophilum in wheat straw using response surface methodology. Biochemical Engineering Journal, 35(2), 136–141.

    Article  CAS  Google Scholar 

  20. Kaur, H., Arora, D. S., & Sharma, V. (2014). Isolation, Purification, and Characterization of Antimicrobial Compound 6-[1,2-dimethyl-6-(2-methyl-allyloxy)-hexyl]-3-(2-methoxy-phenyl)-chromen-4-one from Penicillium sp. HT-28. Applied Biochemistry and Biotechnology, 173(8), 1963–1976.

    Article  CAS  Google Scholar 

  21. Mortelmans, K., & Zeiger, E. (2000). The Ames Salmonella/microsome mutagenicity assay. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 455(1), 29–60.

    Article  CAS  Google Scholar 

  22. Ciapetti, G., Cenni, E., Pratelli, L., & Pizzoferrato, A. (1993). In vitro evaluation of cell/biomaterial interaction by MTT assay. Biomaterials, 14(5), 359–364.

    Article  CAS  Google Scholar 

  23. Salyers, A. A., & Whitt, D. D. (2002). Bacterial pathogenesis: a molecular approach (2nd ed.). Washington, D.C.: American Society for Microbiology. Press. ISBN 1-55581-171-X.

    Google Scholar 

  24. Paluri, V., Ravichandran, S., Kumar, G., Karthik, L., & Rao, K. B. (2012). Phytochemical composition and in vitro antimicrobial activity of methanolic extract of Callistemon lanceolatus DC. International Journal of Pharmacy and Pharmaceutical Sciences, 4(2), 699–2.

    CAS  Google Scholar 

  25. Arora, D. S., Kaur, H., Onsare, J. G., & Sharma, V. (2010). Production, optimization and characterization of antimicrobial compound from Aspergillus sp. International Journal of Pharmacy, 4(1), 157–171.

    Google Scholar 

  26. Kaur, G. J., & Arora, D. S. (2009). Antibacterial and phytochemical screening of Anethum graveolens, Foeniculum vulgare and Trachyspermum ammi. BMC Complementary and Alternative Medicine, 9(1), 30.

    Article  Google Scholar 

  27. Jalal, T. K., Ahmed, I. A., Mikail, M., Momand, L., Draman, S., Isa, M. L. M., & Wahab, R. A. (2015). Evaluation of antioxidant, total phenol and flavonoid content and antimicrobial activities of Artocarpus altilis (breadfruit) of underutilized tropical fruit extracts. Applied Biochemistry and Biotechnology, 175(7), 3231–3243.

    Article  CAS  Google Scholar 

  28. Arora, D. S., & Chandra, P. (2011). Antioxidant activity of Aspergillus fumigatus. ISRN Pharmacology. doi:10.5402/2011/619395.

    Google Scholar 

Download references

Acknowledgments

The authors are thankful to university grants commission for the grant in the form of UPE (University Potential for excellence) and the corresponding author as PI of the project. Lovedeep Nim is also thankful to UGC for Rajiv Gandhi National Fellowship for SC students (201516-RGNF-17-SC-HAR-27244).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daljit Singh Arora.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, D.S., Nim, L. & Kaur, H. Antimicrobial Potential of Callistemon lanceolatus Seed Extract and its Statistical Optimization. Appl Biochem Biotechnol 180, 289–305 (2016). https://doi.org/10.1007/s12010-016-2099-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2099-3

Keywords

Navigation