Skip to main content
Log in

Functional Characterization of a Novel Dactylosporangium Esterase and Its Utilization in the Asymmetric Synthesis of (R)-Methyl Mandelate

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

One novel esterase DAEst6 was identified from the genome of Dactylosporangium aurantiacum subsp. Hamdenensis NRRL 18085. DAEst6 was further characterized to be an esterase which exhibited high resistance to high pH values. Esterase DAEst6 could resolve racemic methyl mandelate and generate (R)-methyl mandelate, one key drug intermediate, with an enantiomeric excess and a conversion of 99 and 49 %, respectively, after process optimization. The optimal working condition for the preparation of (R)-methyl mandelate through DAEst6 was found to be 10-mM racemic methyl mandelate, no organic co-solvents, pH 7.5, and 40 °C, for 5 h. Our work was the first report about the functional characterization of one novel Dactylosporangium esterase and the utilization of one Dactylosporangium esterase in kinetic resolution. Dactylosporangium esterases represented by DAEst6 possess great potential in the generation of valuable chiral drug intermediates and chemicals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Groger, H. (2001). Enzymatic routes to enantiomerically pure aromatic alpha-hydroxy carboxylic acids: a further example for the diversity of biocatalysis. Advanced Synthesis & Catalysis, 343, 547–558.

    Article  CAS  Google Scholar 

  2. Zhang, Z. J., Jiang, P., Ma, B. D., & Xu, J. H. (2014). Efficient biocatalytic synthesis of chiral chemicals. Advances in Biochemical Engineering/Biotechnology, 1–52.

  3. Surivet, J. P., & Vatele, J. M. (1999). Total synthesis of antitumor Goniothalamus styryllactones. Tetrahedron, 55, 13011–13028.

    Article  CAS  Google Scholar 

  4. Savidge, T. A. (1984). In J. V. Erick (Ed.), Biotechnology of industrial antibiotics (drugs & the pharmaceutical sciences). New York: Marcel Dekker.

    Google Scholar 

  5. Guo, J. L., Mu, X. Q., & Xu, Y. (2010). Integration of newly isolated biocatalyst and resin-based in situ product removal technique for the asymmetric synthesis of (R)-methyl mandelate. Bioprocess and Biosystems Engineering, 33, 797–804.

    Article  CAS  Google Scholar 

  6. Yadav, G. D., & Bhagat, R. D. (2004). Synthesis of methyl phenyl glyoxylate via clean oxidation of methyl mandelate over a nanocatalyst based on heteropolyacid supported on clay. Organic Process Research & Development, 8, 879–882.

    Article  CAS  Google Scholar 

  7. Kinbara, K., Sakai, K., Hashimoto, Y., Nohira, H., & Saigo, K. (1996). Design of resolving reagents: p-substituted mandelic acids as resolving reagents for 1-arylalkylamines. Tetrahedron-Asymmetry, 7, 1539–1542.

    Article  CAS  Google Scholar 

  8. Pennacchio, A., Giordano, A., Rossi, M., & Raia, C. A. (2010). Effective synthesis of methyl (R)-mandelate by asymmetric reduction with a thermophilic NADH-dependent alcohol dehydrogenase. Journal of Biotechnology, 150, 525–525.

    Article  Google Scholar 

  9. Wei, H. N., & Wu, B. (2008). Screening and immobilization Burkholderia sp. GXU56 lipase for enantioselective resolution of (R,S)-methyl mandelate. Applied Biochemistry and Biotechnology, 149, 79–88.

    Article  CAS  Google Scholar 

  10. Pifissao, C., & Nascimento, M. D. (2006). Effects of organic solvents and ionic liquids on the aminolysis of (RS)-methyl mandelate catalyzed by lipases. Tetrahedron-Asymmetry, 17, 428–433.

    Article  Google Scholar 

  11. Yadav, G. D., & Sivakumar, P. (2004). Enzyme-catalysed optical resolution of mandelic acid via RS(−/+)-methyl mandelate in non-aqueous media. Biochemical Engineering Journal, 19, 101–107.

    Article  CAS  Google Scholar 

  12. Noyori, R., & Kitamura, M. (1991). Enantioselective addition of organometallic reagents to carbonyl-compounds—chirality transfer, multiplication, and amplification. Angewandte Chemie International Edition in English, 30, 49–69.

    Article  Google Scholar 

  13. Patel, R. N. (2003). Microbial/enzymatic synthesis of chiral pharmaceutical intermediates. Current Opinion in Drug Discovery & Development, 6, 902–920.

    CAS  Google Scholar 

  14. Patel, R. N. (2006). Biocatalysis: synthesis of chiral intermediates for drugs. Current Opinion in Drug Discovery & Development, 9, 741–764.

    CAS  Google Scholar 

  15. Laemmli, U. K. (1970). Cleavage of structural proteins during assembly of head of bacteriophage-T4. Nature, 227, 680–685.

    Article  CAS  Google Scholar 

  16. Bradford, M. M. (1976). Rapid and sensitive method for quantitation of microgram quantities of protein utilizing principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    Article  CAS  Google Scholar 

  17. Winkler, U. K., & Stuckmann, M. (1979). Glycogen, hyaluronate, and some other polysaccharides greatly enhance the formation of exolipase by Serratia marcescens. Journal of Bacteriology, 138, 663–670.

    CAS  Google Scholar 

  18. Chen, C. S., Fujimoto, Y., Girdaukas, G., & Sih, C. J. (1982). Quantitative analyses of biochemical kinetic resolutions of enantiomers. Journal of the American Chemical Society, 104, 7294–7299.

    Article  CAS  Google Scholar 

  19. Fang, Y. W., Wang, S. J., Liu, S., & Jiao, Y. L. (2015). Discovery a novel organic solvent tolerant esterase from Salinispora arenicola CNP193 through genome mining. International Journal of Biological Macromolecules, 80, 334–340.

    Article  CAS  Google Scholar 

  20. Rao, L., Xue, Y. F., Zhou, C., Tao, J., Li, G., Lu, J. R., et al. (2011). A thermostable esterase from Thermoanaerobacter tengcongensis opening up a new family of bacterial lipolytic enzymes. Biochimica Et Biophysica Acta-Proteins and Proteomics, 1814, 1695–1702.

    Article  CAS  Google Scholar 

  21. Tao, W., Lee, M. H., Wu, J., Kim, N. H., & Lee, S. W. (2011). Isolation and characterization of a family VII esterase derived from alluvial soil metagenomic library. Journal of Microbiology, 49, 178–185.

    Article  CAS  Google Scholar 

  22. Pohlenz, H. D., Boidol, W., Schuttke, I., & Streber, W. R. (1992). Purification and properties of an Arthrobacter oxydans P52 carbamate hydrolase specific for the herbicide phenmedipham and nucleotide-sequence of the corresponding gene. Journal of Bacteriology, 174, 6600–6607.

    CAS  Google Scholar 

  23. Kang, C. H., Oh, K. H., Lee, M. H., Oh, T. K., Kim, B. H., & Yoon, J. H. (2011). A novel family VII esterase with industrial potential from compost metagenomic library. Microbial Cell Factories, 10, 1–8.

    Article  Google Scholar 

  24. Phongsopitanun, W., Kudo, T., Ohkuma, M., Suwanborirux, K., & Tanasupawat, S. (2015). Dactylosporangium sucinum sp nov., isolated from Thai peat swamp forest soil. Journal of Antibiotics, 68, 379–384.

    Article  CAS  Google Scholar 

  25. Thawai, C., & Suriyachadkun, C. (2013). Dactylosporangium siamense sp nov., isolated from soil. International Journal of Systematic and Evolutionary Microbiology, 63, 4033–4038.

    Article  CAS  Google Scholar 

  26. Seo, S. H., & Lee, S. D. (2010). Dactylosporangium darangshiense sp nov., isolated from rock soil. International Journal of Systematic and Evolutionary Microbiology, 60, 1256–1260.

    Article  CAS  Google Scholar 

  27. Kim, B. Y., Kshetrimayum, J. D., & Goodfellow, M. (2011). Detection, selective isolation and characterisation of Dactylosporangium strains from diverse environmental samples. Systematic and Applied Microbiology, 34, 606–616.

    Article  Google Scholar 

  28. Xiao, Y., Li, S. M., Niu, S. W., Ma, L. A., Zhang, G. T., Zhang, H. B., et al. (2011). Characterization of tiacumicin B biosynthetic gene cluster affording diversified tiacumicin analogues and revealing a tailoring dihalogenase. Journal of the American Chemical Society, 133, 1092–1105.

    Article  CAS  Google Scholar 

  29. Yadav, G. D., Sajgure, A. D., & Dhoot, S. B. (2008). Insight into microwave irradiation and enzyme catalysis in enantioselective resolution of RS-(+/−)-methyl mandelate. Journal of Chemical Technology and Biotechnology, 83, 1145–1153.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful for the financial supports from National Natural Science Foundation of China (No. 21302199), Strategic Priority Research Program of the Chinese Academy of Sciences (XDA11030404), Guangzhou Science and Technology Plan Projects (201510010012), and Key Project “Engineering High-Performance Microorganisms for Advanced Bio-Based Manufacturing” from the Chinese Academy of Sciences (KGZD-EW-606). We also would like to thank the constant help from Professor Changsheng Zhang and Professor Jianhua Ju.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yunfeng Hu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deng, D., Zhang, Y., Sun, A. et al. Functional Characterization of a Novel Dactylosporangium Esterase and Its Utilization in the Asymmetric Synthesis of (R)-Methyl Mandelate. Appl Biochem Biotechnol 180, 228–247 (2016). https://doi.org/10.1007/s12010-016-2095-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2095-7

Keywords

Navigation