Skip to main content
Log in

Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE)

  • Published:
Applied Biochemistry and Biotechnology Aims and scope Submit manuscript

Abstract

This investigation utilized sugarcane bagasse aqueous extract (SBAE), a nontoxic, cost-effective medium to boost triacylglycerol (TAG) accumulation in novel fresh water microalgal isolate Scenedesmus sp. IITRIND2. Maximum lipid productivity of 112 ± 5.2 mg/L/day was recorded in microalgae grown in SBAE compared to modified BBM (26 ± 3 %). Carotenoid to chlorophyll ratio was 12.5 ± 2 % higher than in photoautotrophic control, indicating an increase in photosystem II activity, thereby increasing growth rate. Fatty acid methyl ester (FAME) profile revealed presence of C14:0 (2.29 %), C16:0 (15.99 %), C16:2 (4.05 %), C18:0 (3.41 %), C18:1 (41.55 %), C18:2 (12.41), and C20:0 (1.21 %) as the major fatty acids. Cetane number (64.03), cold filter plugging property (−1.05 °C), and oxidative stability (12.03 h) indicated quality biodiesel abiding by ASTM D6751 and EN 14214 fuel standards. Results consolidate the candidature of novel freshwater microalgal isolate Scenedesmus sp. IITRIND2 cultivated in SBAE, aqueous extract made from copious, agricultural waste sugarcane bagasse to increase the lipid productivity, and could further be utilized for cost-effective biodiesel production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Tripathi, R., Singh, J., & Thakur, I. S. (2015). Characterization of microalga Scenedesmus sp. ISTGA1 for potential CO2 sequestration and biodiesel production. Renewable Energy, 74, 774–781. doi:10.1016/j.renene.2014.09.005.

    Article  CAS  Google Scholar 

  2. Chisti, Y. (2007). Biodiesel from microalgae. Biotechnology Advances, 25(3), 294–306.

    Article  CAS  Google Scholar 

  3. Rawat, I., Ranjith Kumar, R., Mutanda, T., & Bux, F. (2013). Biodiesel from microalgae: a critical evaluation from laboratory to large scale production. Applied Energy, 103, 444–467. doi:10.1016/j.apenergy.2012.10.004.

    Article  CAS  Google Scholar 

  4. Bhatnagar, A., Chinnasamy, S., Singh, M., & Das, K. C. (2011). Renewable biomass production by mixotrophic algae in the presence of various carbon sources and wastewaters. Applied Energy, 88(10), 3425–3431. doi:10.1016/j.apenergy.2010.12.064.

    Article  CAS  Google Scholar 

  5. Xu, H., Miao, X., & Wu, Q. (2006). High quality biodiesel production from a microalga Chlorella protothecoides by heterotrophic growth in fermenters. Journal of Biotechnology, 126(4), 499–507. doi:10.1016/j.jbiotec.2006.05.002.

    Article  CAS  Google Scholar 

  6. Gao, C., Zhai, Y., Ding, Y., & Wu, Q. (2010). Application of sweet sorghum for biodiesel production by heterotrophic microalga Chlorella protothecoides. Applied Energy, 87(3), 756–761. doi:10.1016/j.apenergy.2009.09.006.

    Article  CAS  Google Scholar 

  7. Limayem, A., & Ricke, S. C. (2012). Lignocellulosic biomass for bioethanol production: current perspectives, potential issues and future prospects. Progress in Energy and Combustion Science, 38(4), 449–467. doi:10.1016/j.pecs.2012.03.002.

    Article  CAS  Google Scholar 

  8. Cerón-García, M. C., Macías-Sánchez, M. D., Sánchez-Mirón, A., García-Camacho, F., & Molina-Grima, E. (2013). A process for biodiesel production involving the heterotrophic fermentation of Chlorella protothecoides with glycerol as the carbon source. Applied Energy, 103, 341–349.

    Article  Google Scholar 

  9. Park, W.-K., Moon, M., Kwak, M.-S., Jeon, S., Choi, G.-G., Yang, J.-W., & Lee, B. (2014). Use of orange peel extract for mixotrophic cultivation of Chlorella vulgaris: increased production of biomass and FAMEs. Bioresource Technology, 171, 343–9. doi:10.1016/j.biortech.2014.08.109.

    Article  CAS  Google Scholar 

  10. Mu, J., Li, S., Chen, D., Xu, H., Han, F., Feng, B., & Li, Y. (2015). Enhanced biomass and oil production from sugarcane bagasse hydrolysate (SBH) by heterotrophic oleaginous microalga Chlorella protothecoides. Bioresource Technology, 185, 99–105. doi:10.1016/j.biortech.2015.02.082.

    Article  CAS  Google Scholar 

  11. Pittman, J. K., Dean, A. P., & Osundeko, O. (2011). The potential of sustainable algal biofuel production using wastewater resources. Bioresource Technology, 102(1), 17–25. doi:10.1016/j.biortech.2010.06.035.

    Article  CAS  Google Scholar 

  12. Liang, Y. (2013). Producing liquid transportation fuels from heterotrophic microalgae. Applied Energy, 104, 860–868. doi:10.1016/j.apenergy.2012.10.067.

    Article  CAS  Google Scholar 

  13. Lee, Y., Iyer, P. & Torget, R. (1999). Dilute-acid hydrolysis of lignocellulosic biomass. In: Tsao, G., Brainard, A., Bungay, H., Cao, N., Cen, P., Chen, Z., Du, J., Foody, B., Gong, C., Hall, P., Ho, N., Irwin, D., Iyer, P., Jeffries, T., Ladisch, C., Ladisch, M., Lee, Y., Mosier, N., Mühlemann, H., Sedlak, M., Shi, N., Tolan, J., Torget, R., Wilson, D., Xia, L. (Eds.), Recent Progress in Bioconversion of Lignocellulosics, vol. 65. Springer, Berlin, Heidelberg, pp. 93–115.

  14. Sidana, A., & Farooq, U. (2014). Sugarcane bagasse: a potential medium for fungal cultures. Chinese Journal of Biology, 2014, 1–5. doi:10.1155/2014/840505.

    Article  Google Scholar 

  15. Tamura, K., Stecher, G., Peterson, D., Filipski, A., & Kumar, S. (2013). MEGA6: molecular evolutionary genetics analysis version 6.0. Molecular Biology and Evolution, 30, 2725–2729.

    Article  CAS  Google Scholar 

  16. Dubois, M., Gilles, K. A., Ton, J. K. H., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28, 350–356. doi:10.1021/ac60111a017.

    Article  CAS  Google Scholar 

  17. Patel, A., Sindhu, D. K., Arora, N., Singh, R. P., Pruthi, V., & Pruthi, P. A. (2015). Biodiesel production from Non-edible lignocellulosic biomass of Cassia fistula L. fruit pulp using oleaginous yeast Rhodosporidium kratochvilovae HIMPA1. Bioresource Technology, 197, 97–98. doi:10.1016/j.biortech.2015.08.039.

    Article  Google Scholar 

  18. Arora, N., Patel, A., Pruthi, P. A., & Pruthi, V. (2016). Synergistic dynamics of nitrogen and phosphorous influences lipid productivity in Chlorella minutissima for biodiesel production. Bioresource Technology, Article in Press. doi:10.1016/j.biortech.2016.02.112

  19. Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods in Enzymology, 148, 350–382. doi:10.1016/0076-6879(87)48036-1.

    Article  CAS  Google Scholar 

  20. Pancha, I., Chokshi, K., George, B., Ghosh, T., Paliwal, C., Maurya, R., & Mishra, S. (2014). Nitrogen stress triggered biochemical and morphological changes in the microalgae Scenedesmus sp. CCNM 1077. Bioresource Technology, 156, 146–154. doi:10.1016/j.biortech.2014.01.025.

    Article  CAS  Google Scholar 

  21. Sharma, K. K., Schuhmann, H., & Schenk, P. M. (2012). High lipid induction in microalgae for biodiesel production. Energies, 5, 1532–1553. doi:10.3390/en5051532.

    Article  CAS  Google Scholar 

  22. Wan, M., Liu, P., Xia, J., Rosenberg, J. N., Oyler, G. A., Betenbaugh, M. J., & Qiu, G. (2011). The effect of mixotrophy on microalgal growth, lipid content, and expression levels of three pathway genes in Chlorella sorokiniana. Applied Microbiology and Biotechnology, 91(3), 835–44. 10.1007/s00253-011-3399-8.

    Article  CAS  Google Scholar 

  23. Li, T., Zheng, Y., Yu, L., & Chen, S. (2014). Mixotrophic cultivation of a Chlorella sorokiniana strain for enhanced biomass and lipid production. Biomass and Bioenergy, 66, 204–213. doi:10.1016/j.biombioe.2014.04.010.

    Article  CAS  Google Scholar 

  24. Lu, Y., Zhai, Y., Liu, M., & Wu, Q. (2010). Biodiesel production from algal oil using cassava (Manihot esculenta Crantz) as feedstock. Journal of Applied Phycology, 22(5), 573–578. doi:10.1007/s10811-009-9496-8.

    Article  CAS  Google Scholar 

  25. Zhao, G., Yu, J., Jiang, F., Zhang, X., & Tan, T. (2012). The effect of different trophic modes on lipid accumulation of Scenedesmus quadricauda. Bioresource Technology, 114, 466–471. doi:10.1016/j.biortech.2012.02.129.

    Article  CAS  Google Scholar 

  26. Rattanapoltee, P., & Kaewkannetra, P. (2014). Utilization of agricultural residues of pineapple peels and sugarcane bagasse as cost-saving raw materials in Scenedesmus acutus for lipid accumulation and biodiesel production. Applied Biochemistry and Biotechnology, 173(6), 1495–510. doi:10.1007/s12010-014-0949-4.

    Article  CAS  Google Scholar 

  27. Yang, S., Liu, G., Meng, Y., Wang, P., Zhou, S., & Shang, H. (2014). Utilization of xylose as a carbon source for mixotrophic growth of Scenedesmus obliquus. Bioresource Technology, 172, 180–5. doi:10.1016/j.biortech.2014.08.122.

    Article  CAS  Google Scholar 

  28. Heredia-Arroyo, T., Wei, W., Ruan, R., & Hu, B. (2011). Mixotrophic cultivation of Chlorella vulgaris and its potential application for the oil accumulation from non-sugar materials. Biomass and Bioenergy, 35(5), 2245–2253.

    Article  CAS  Google Scholar 

  29. Yamane, Y., Utsunomiya, T., Watanabe, M., & Sasaki, K. (2001). Biomass production in mixotrophic culture of Euglena gracilis under acidic condition and its growth energetics. Biotechnology Letters, 23(15), 1223–1228. doi:10.1023/A:1010573218863.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas Pruthi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 20 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arora, N., Patel, A., Pruthi, P.A. et al. Boosting TAG Accumulation with Improved Biodiesel Production from Novel Oleaginous Microalgae Scenedesmus sp. IITRIND2 Utilizing Waste Sugarcane Bagasse Aqueous Extract (SBAE). Appl Biochem Biotechnol 180, 109–121 (2016). https://doi.org/10.1007/s12010-016-2086-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12010-016-2086-8

Keywords

Navigation