Applied Biochemistry and Biotechnology

, Volume 179, Issue 8, pp 1469–1484 | Cite as

Utilization of Cheese Whey Using Synergistic Immobilization of β-Galactosidase and Saccharomyces cerevisiae Cells in Dual Matrices

  • Anusha Kokkiligadda
  • Arun Beniwal
  • Priyanka Saini
  • Shilpa VijEmail author


Whey is a byproduct of the dairy industry, which has prospects of using as a source for production of various valuable compounds. The lactose present in whey is considered as an environmental pollutant and its utilization for enzyme and fuel production, may be effective for whey bioremediation. The dairy yeast Kluyveromyces marxianus have the ability to utilize lactose sharply as the major carbon source for the production of the enzyme. Five strains were tested for the production of the β-galactosidase using whey. The maximum β-galactosidase activity of 1.74 IU/mg dry weight was achieved in whey using K. marxianus MTCC 1389. The biocatalyst was further immobilized on chitosan macroparticles and exhibited excellent functional activity at 35 °C. Almost 89 % lactose hydrolysis was attained for concentrated whey (100 g/L) and retained 89 % catalytic activity after 15 cycles of reuse. Finally, β-galactosidase was immobilized on chitosan and Saccharomyces cerevisiae on calcium alginate, and both were used together for the production of ethanol from concentrated whey. Maximal ethanol titer of 28.9 g/L was achieved during fermentation at 35 °C. The conclusions generated by employing two different matrices will be beneficial for the future modeling using engineered S. cerevisiae in scale-up studies.


ONPG Chitosan β-galactosidase Immobilization Whey 



The authors kindly acknowledge the National Fund for Basic, Strategic and Frontier Application Research in Agriculture (NFBSFARA) ICAR, India for providing the necessary support to carry out this research work.

Compliance with Ethical Standards

Conflict of Interest

The authors declare no conflict of interest.


  1. 1.
    Kosseva, M., Panesar, P., Kaur, G., & Kennedy, J. F. (2009). Use of immobilised biocatalysts in the processing of cheese whey. International Journal of Biological Macromolecules, 45, 437–47.CrossRefGoogle Scholar
  2. 2.
    Nath, A., Mondal, S., Chakraborty, S., Bhattacharjee, C., & Chowdhury, R. (2014). Production, purification, characterization, immobilization, and application of β-galactosidase: a review. Asia-Pacific Journal Chemical Engineering, 9, 330–348.CrossRefGoogle Scholar
  3. 3.
    Guimaraes, P., Teixeira, J., & Domingues, L. (2010). Fermentation of lactose to bio-ethanol by yeasts as part of integrated solutions for the valorisation of cheese whey. Biotechnology Advances, 28, 375–84.CrossRefGoogle Scholar
  4. 4.
    Mussatto, S. I., Dragone, G., Guimaraes, P. M. R., Silva, J. P. A., Carneiro, L. M., & Roberto, I. C. (2010). Technological trends, global market, and challenges of bio-ethanol production. Biotechnology Advances, 28, 817–30.CrossRefGoogle Scholar
  5. 5.
    Gabardo, S., Rech, R., & Ayub, M. A. Z. (2012). Performance of different immobilized-cell systems to efficiently produce ethanol from whey: fluidized batch, packed bed and fluidized continuous bioreactors. Journal of Chemical Technology and Biotechnology, 87, 1194–201.CrossRefGoogle Scholar
  6. 6.
    Gasteiger, E., Gattiker, A., Hoogland, C., Ivanyi, I., & Appel, R. D. A. (2003). Bairoch ExPASy: the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research, 31, 3784–3788.CrossRefGoogle Scholar
  7. 7.
    Panesar, P. S., Panesar, R., Singh, R. S., Kennedy, J. F., & Kumar, H. (2006). Microbial production, immobilization and applications of β‐D‐galactosidase. Journal of Chemical Technology and Biotechnology, 81, 530–543.CrossRefGoogle Scholar
  8. 8.
    Husain, Q. (2010). Beta Galactosidases and their potential applications: a review. Critical Rev Biotechnol, 30, 41–62.CrossRefGoogle Scholar
  9. 9.
    Yang, S. T., & Silva, E. M. (1995). Novel products and new technologies for use of a familiar carbohydrate, milk lactose. Journal of Dairy Science, 78, 2541–2562.CrossRefGoogle Scholar
  10. 10.
    Song, Y. S., Lee, J. H., Kang, S. W., & Kim, S. W. (2010). Performance of β-galactosidase pretreated with lactose to prevent activity loss during the enzyme immobilisation process. Food Chemistry, 123, 1–5.CrossRefGoogle Scholar
  11. 11.
    Guimaraes, P. M., Teixeira, J. A., & Domingues, L. (2010). Metabolic engineering of Saccharomyces cerevisiae for lactose/whey fermentation. Biotechnology Advances, 28, 375–384.CrossRefGoogle Scholar
  12. 12.
    Dahiya, M., Vij, S., Yadav, D., & Hati, S. (2010). Isolation of thermotolerant, alcoholtolerant and osmotolerant yeast strains from products and non dairy products. Indian Journal of Dairy Science, 63, 308.Google Scholar
  13. 13.
    Garcia‐Galan, C., Berenguer‐Murcia, A., Fernandez‐Lafuente, R., & Rodrigues, R. C. (2011). Potential of different enzyme immobilization strategies to improve enzyme performance. Advanced Synthesis and Catalysis, 353, 2885–2904.CrossRefGoogle Scholar
  14. 14.
    Klein, M. P., Fallavena, L. P., Schoffer, J. D. N., Ayub, M. A., Rodrigues, R. C., Ninow, J. L., & Hertz, P. F. (2013). High stability of immobilized β-d-galactosidase for lactose hydrolysis and galactooligosaccharides synthesis. Carbohydrate Polymers, 95, 465–470.CrossRefGoogle Scholar
  15. 15.
    Lima, A. F., Cavalcante, K. F., de Freitas, M. D. F. M., Rodrigues, T. H. S., Rocha, M. V. P., & Gonçalves, L. R. B. (2013). Comparative biochemical characterization of soluble and chitosan immobilized β-galactosidase from Kluyveromyces lactis NRRL Y1564. Process Biochemistry, 48, 443–452.CrossRefGoogle Scholar
  16. 16.
    Klein, M. P., Nunes, M. R., Rodrigues, R. C., Benvenutti, E. V., Costa, T. M., Hertz, P. F., & Ninow, J. L. (2012). Effect of the support size on the properties of β-galactosidase immobilized on chitosan: advantages and disadvantages of macro and nanoparticles. Biomac, 13, 2456–2464.CrossRefGoogle Scholar
  17. 17.
    Kourkoutas, Y., Bekatorou, A., Banat, I., Marchant, R., & Koutinas, A. A. (2004). Immobilization technologies and support materials suitable in alcohol beverages production: a review. Food Microbiology, 21, 377–97.CrossRefGoogle Scholar
  18. 18.
    Yu, J. L., Yue, G. J., Zhong, J., Zhang, X., & Tan, T. W. (2010). Immobilization of Saccharomyces cerevisiae to modified bagasse for ethanol production. Renewable Energy, 35, 1130–4.CrossRefGoogle Scholar
  19. 19.
    Bai, F. W., Anderson, W. A., & Moo-Young, M. (2008). Ethanol fermentation technologies from sugar and starch feedstocks. Biotechnology Advances, 26, 89–105.CrossRefGoogle Scholar
  20. 20.
    Bansal, S., Oberoi, H. S., Dhillon, G. S., & Patil, R. T. (2008). Production of β-galactosidase by Kluyveromyces marxianus MTCC 1388 using whey and effect of four different methods of enzyme extraction on β-galactosidase activity. Indian Journal of Microbiology, 48, 337–341.CrossRefGoogle Scholar
  21. 21.
    Miller, J. H. (1972). Experiments in molecular genetics (pp. 352–355). New York: Cold Spring Harbor Laboratory.Google Scholar
  22. 22.
    Guisan, J. M. (2013). Immobilization of enzymes and cells (3rd ed., pp. 313–326). New York: Humana press.CrossRefGoogle Scholar
  23. 23.
    Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.CrossRefGoogle Scholar
  24. 24.
    Rech, R., Cassini, C. F., Secchi, A., & Ayub, M. A. Z. (1999). Utilization of protein-hydrolyzed cheese whey for production of β-galactosidase by Kluyveromyces marxianus. Journal of Industrial Microbiology and Biotechnology, 23, 91–96.CrossRefGoogle Scholar
  25. 25.
    Furlan, S. A., Schneider, A. L., Merkle, R., de Fátima Carvalho-Jonas, M., & Jonas, R. (2000). Formulation of a lactose-free, low-cost culture medium for the production of β-D-galactosidase by Kluyveromyces marxianus. Biotechnology Letters, 22, 589–593.CrossRefGoogle Scholar
  26. 26.
    Oliveira, C., Guimaraes, P. M., & Domingues, L. (2011). Recombinant microbial systems for improved β-galactosidase production and biotechnological applications. Biotechnology Advances, 29, 600–609.CrossRefGoogle Scholar
  27. 27.
    Fiedurek, J., & Szczodrak, J. (1993). Selection of strain, culture conditions and extraction procedures for optimum production of beta-galactosidase from Kluyveromyces fragilis. Acta Microbiologica Polonica, 43, 57–65.Google Scholar
  28. 28.
    Dagbagli, S., & Goksungur, Y. (2008). Optimization of β-galactosidase production using Kluyveromyces lactis NRRL Y-8279 by response surface methodology. Electronic Journal of Biotechnology, 11, 11–12.CrossRefGoogle Scholar
  29. 29.
    Gupte, A. M., & Nair, J. S. (2010). β-galactosidase production and ethanol fermentation from whey using β-galactosidase Kluyveromyces marxianus. Journal of Scientific and Industrial Research, 69, 855–859.Google Scholar
  30. 30.
    Panesar, P. S., & Kumari, S. (2011). Lactulose: production, purification and potential applications. Biotechnology Advances, 29, 940–948.CrossRefGoogle Scholar
  31. 31.
    Braga, A. R. C., Gomes, P. A., & Kalil, S. J. (2012). Formulation of culture medium with agroindustrial waste for production from Kluyveromyces marxianus ATCC 16045. Food and Bioprocess Technology, 5, 1653–1663.CrossRefGoogle Scholar
  32. 32.
    Oberoi, H. S., Bansal, S., & Dhillon, G. S. (2008). Enhanced β‐galactosidase production by supplementing whey with cauliflower waste. International Journal of Food Science and Technology, 43, 1499–1504.CrossRefGoogle Scholar
  33. 33.
    Kumari, S., Panesar, P. S., & Panesar, R. (2011). Production of β‐galactosidase using novel yeast isolate from whey. International Journal of Dairy Science, 6, 150–157.CrossRefGoogle Scholar
  34. 34.
    Biro, E., Nemeth, A. S., Sisak, C., Gyenis, J., & Szajani, B. (2007). Beta-galactosidase immobilization on chitosan microspheres. Journal of Biotechnology, 131, S98.CrossRefGoogle Scholar
  35. 35.
    Wentworth, D. S., Skonberg, D., Donahue, D. W., & Ghanem, A. (2004). Application of chitosan‐entrapped β‐galactosidase in a packed‐bed reactor system. Journal of Applied Polymer Science, 91, 1294–1299.CrossRefGoogle Scholar
  36. 36.
    Jochems, P., Satyawali, Y., Diels, L., & Dejonghe, W. (2011). Enzyme immobilization on/in polymeric membranes: status, challenges and perspectives in biocatalytic membrane reactors (BMRs). Green Chemistry, 13, 1609–1623.CrossRefGoogle Scholar
  37. 37.
    Neri, D. F., Balcao, V. M., Costa, R. S., Rocha, I. C., Ferreira, E. M., Torres, D. P., & Teixeira, J. A. (2009). Galacto-oligosaccharides production during lactose hydrolysis by free Aspergillus oryzae β-galactosidase and immobilized on magnetic polysiloxane-polyvinyl alcohol. Food Chemistry, 115, 92–99.CrossRefGoogle Scholar
  38. 38.
    Hahn‐Hägerdal, B. (1985). Comparison between immobilized Kluyveromyces fragilis and Saccharomyces cerevisiae coimmobilized with β‐galactosidase, with respect to continuous ethanol production from concentrated whey permeate. Biotechnology and Bioengineering, 27, 914–916.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Anusha Kokkiligadda
    • 1
  • Arun Beniwal
    • 1
  • Priyanka Saini
    • 1
  • Shilpa Vij
    • 1
    Email author
  1. 1.Dairy Microbiology DivisionNational Dairy Research InstituteKarnalIndia

Personalised recommendations