Advertisement

Applied Biochemistry and Biotechnology

, Volume 179, Issue 8, pp 1456–1468 | Cite as

Effect of Rol Genes on Polyphenols Biosynthesis in Artemisia annua and Their Effect on Antioxidant and Cytotoxic Potential of the Plant

  • Erum Dilshad
  • Sara Zafar
  • Hammad Ismail
  • Mohammad Tahir Waheed
  • Rosa Maria Cusido
  • Javier Palazon
  • Bushra MirzaEmail author
Article

Abstract

Flavonoids are famous for their antioxidant capacity and redox potential. They can combat with cell aging, lipid peroxidation, and cancer. In the present study, Artemisia annua hybrid (Hyb8001r) was subjected to qualitative and quantitative analysis of flavonoids through HPLC. Rol genes transgenics of A. annua were also evaluated for an increase in their flavonoid content along with an increase in antioxidant and cytotoxic potential. This was also correlated with the expression level of flavonoids biosynthetic pathway genes as determined by real-time qPCR. Phenylalanine ammonia-lyase and chalcone synthase genes were found to be significantly more highly expressed in rol B (four to sixfold) and rol C transgenics (3.8–5.5-fold) than the wild-type plant. Flavonoids detected in the wild-type A. annua through HPLC include rutin (0.31 mg/g DW), quercetin (0.01 mg/g DW), isoquercetin (0.107 mg/g DW) and caffeic acid (0.03 mg/g DW). Transgenics of the rol B gene showed up to threefold increase in rutin and caffeic acid, sixfold increase in isoquercetin, and fourfold increase in quercetin. Whereas, in the case of transgenics of rol C gene, threefold increase in rutin and quercetin, 5 fold increase in isoquercetin, and 2.6-fold increase in caffeic acid was followed. Total phenolics and flavonoids content was also found to be increased in rol B (1.5-fold) and rol C (1.4-fold) transgenics as compared to the wild-type plant along with increased free radical scavenging activity. Similarly, the cytotoxic potential of rol gene transgenics against MCF7, HeLA, and HePG2 cancer cell lines was found to be significantly enhanced than the wild-type plant of A. annua. Current findings support the fact that rol genes can alter the secondary metabolism and phytochemical level of the plant. They increased the flavonoids content of A. annua by altering the expression level of flavonoids biosynthetic pathway genes. Increased flavonoid content also enhanced the antioxidant and cytotoxic potential of the plant.

Keywords

Antioxidants Artemisia annua Cytotoxic potential Flavonoids Hyb8001r 

Abbreviations

CHS

chalcone synthase

DMSO

dimethyl sulfoxide

DPPH

2,2-diphenyl-1-picrylhydrazyl

DW

dry weight

PAL

phenylalanine ammonia-lyase

TBE

tris buffer EDTA

ROS

reactive oxygen species

Notes

Acknowledgments

We are appreciative to the Higher Education Commission (HEC) of Pakistan for providing the scholarship to author Erum Dilshad during her Ph.D. Part of this work was financially supported by the Spanish MEC (BIO2014-51861-R) and the Generalitat de Catalunya (2014SGR215).

Authors’ contributions

ED carried out the practical work regarding experiments, i.e., real-time qPCR and MTT assay besides manuscript write-up. SZ and HI carried out HPLC analysis and antioxidant assays. RMC and JP supervised all the work done in the Department of Pharmacy, University of Barcelona, Spain. They also went over the manuscript intellectually and critically to give it final shape for publishing. BM and MTW supervised all the work performed in plant molecular Biology laboratory of QAU Islamabad Pakistan. They too assisted in writing the manuscript and its proofreading. All authors have read and approved the final version of the paper.

Compliance with Ethical Standards

Competing Interests

The authors declare that the have no competing interests.

References

  1. 1.
    Gupta, P. (2012). Withania coagulans Dunal–an overview. International Journal of Pharmaceutical Sciences Review and Research, 12, 68–71.Google Scholar
  2. 2.
    Nweze, E. I., & Eze, E. E. (2009). Justification for the use of Ocimum gratissimum L in herbal medicine and its interaction with disc antibiotics. BMC Complementary and Alternative Medicine, 9, 1.CrossRefGoogle Scholar
  3. 3.
    Ali, H., Houghton, P., & Soumyanath, A. (2006). α-Amylase inhibitory activity of some Malaysian plants used to treat diabetes; with particular reference to Phyllanthus amarus. Journal of Ethnopharmacology, 107, 449–455.CrossRefGoogle Scholar
  4. 4.
    Hazra, B., Biswas, S., & Mandal, N. (2008). Antioxidant and free radical scavenging activity of Spondias pinnata. BMC Complementary and Alternative Medicine, 8, 63.CrossRefGoogle Scholar
  5. 5.
    Halliwell, B. (1989). Protection against tissue damage in vivo by desferrioxamine: what is its mechanism of action? Free Radical Biology and Medicine, 7, 645–651.CrossRefGoogle Scholar
  6. 6.
    Maxwell, S. R. (1995). Prospects for the use of antioxidant therapies. Drugs, 49, 345–361.CrossRefGoogle Scholar
  7. 7.
    Møller, J. K., Madsen, H. L., Aaltonen, T., & Skibsted, L. H. (1999). Dittany (Origanum dictamnus) as a source of water-extractable antioxidants. Food Chemistry, 64, 215–219.CrossRefGoogle Scholar
  8. 8.
    Hanasaki, Y., Ogawa, S., & Fukui, S. (1994). The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Radical Biology and Medicine, 16, 845–850.CrossRefGoogle Scholar
  9. 9.
    Ferreira, J. F., Luthria, D. L., Sasaki, T., & Heyerick, A. (2010). Flavonoids from Artemisia annua L. as antioxidants and their potential synergism with artemisinin against malaria and cancer. Molecules, 15, 3135–3170.CrossRefGoogle Scholar
  10. 10.
    Aberham, A., Cicek, S. S., Schneider, P., & Stuppner, H. (2010). Analysis of sesquiterpene lactones, lignans, and flavonoids in wormwood (Artemisia absinthium L.) using high-performance liquid chromatography (HPLC)-mass spectrometry, reversed phase HPLC, and HPLC-solid phase extraction-nuclear magnetic resonance. Journal of Agricultural and Food Chemistry, 58, 10817–10823.CrossRefGoogle Scholar
  11. 11.
    Hajdú, Z., Martins, A., Orbán-Gyapai, O., Forgo, P., Jedlinszki, N., Máthé, I., & Hohmann, J. (2014). Xanthine oxidase-inhibitory activity and antioxidant properties of the methanol extract and flavonoids of Artemisia asiatica. Records Natural Production, 8, 299–302.Google Scholar
  12. 12.
    Qnais, E., Raad, D., & Bseiso, Y. (2014). Analgesic and anti-inflammatory effects of an extract and flavonoids from Artemisia herba-alba and their mechanisms of action. Neurophysiology, 46, 238–246.CrossRefGoogle Scholar
  13. 13.
    Baraldi, R., Isacchi, B., Predieri, S., Marconi, G., Vincieri, F. F., & Bilia, A. R. (2008). Distribution of artemisinin and bioactive flavonoids from Artemisia annua L. during plant growth. Biochemical Systematics and Ecology, 36, 340–348.CrossRefGoogle Scholar
  14. 14.
    Bourgaud, F., Gravot, A., Milesi, S., & Gontier, E. (2001). Production of plant secondary metabolites: A historical perspective. Plant Science, 161, 839–851.CrossRefGoogle Scholar
  15. 15.
    Bulgakov, V. P. (2008). Functions of rol genes in plant secondary metabolism. Biotechnology Advances, 26, 318–324.CrossRefGoogle Scholar
  16. 16.
    Filippini, F., Rossi, V., Marin, O., Trovato, M., Costantino, P., Downey, P. M., Lo, S. F., & Terzi, M. (1996). A plant oncogene as a phosphatase. Nature, 379, 499–500.CrossRefGoogle Scholar
  17. 17.
    Kiselev, K., Dubrovina, A., Veselova, M., Bulgakov, V., Fedoreyev, S., & Zhuravlev, Y. N. (2007). The rolB gene-induced overproduction of resveratrol in Vitis amurensis transformed cells. Journal of Biotechnology, 128, 681–692.CrossRefGoogle Scholar
  18. 18.
    Shkryl, Y. N., Veremeichik, G. N., Bulgakov, V. P., Tchernoded, G. K., Mischenko, N. P., Fedoreyev, S. A., & Zhuravlev, Y. N. (2008). Individual and combined effects of the rolA, B, and C genes on anthraquinone production in Rubia cordifolia transformed calli. Biotechnology and Bioengineering, 100, 118–125.CrossRefGoogle Scholar
  19. 19.
    Dilshad, E., Cusido, R. M., Estrada, K. R., Bonfill, M., & Mirza, B. (2015). Genetic transformation of Artemisia carvifolia Buch with rol genes enhances artemisinin accumulation. PloS One, 10, e0140266.CrossRefGoogle Scholar
  20. 20.
    Dilshad, E., Cusido, R. M., Palazon, J., Estrada, K. R., Bonfill, M., & Mirza, B. (2015). Enhanced artemisinin yield by expression of rol genes in Artemisia annua. Malaria Journal, 14, 424.CrossRefGoogle Scholar
  21. 21.
    Palazón, J., Cusidó, R., Roig, C., & Pinol, M. (1998). Expression of the rolC gene and nicotine production in transgenic roots and their regenerated plants. Plant Cell Reports, 17, 384–390.CrossRefGoogle Scholar
  22. 22.
    Bulgakov, V. P., Khodakovskaya, M. V., Labetskaya, N. V., Chernoded, G. K., & Zhuravlev, Y. N. (1998). The impact of plant rolC oncogene on ginsenoside production by ginseng hairy root cultures. Phytochemistry, 49, 1929–1934.CrossRefGoogle Scholar
  23. 23.
    Bulgakov, V., Tchernoded, G. K., Mischenko, N., Shkryl, Y. N., Glazunov, V., Fedoreyev, S., & Zhuravlev, Y. N. (2003). Effects of Ca2+ channel blockers and protein kinase/phosphatase inhibitors on growth and anthraquinone production in Rubia cordifolia callus cultures transformed by the rolB and rolC genes. Planta, 217, 349–355.CrossRefGoogle Scholar
  24. 24.
    Bonhomme, V., Laurain-Mattar, D., & Fliniaux, M. (2000). Effects of the rol C gene on hairy root: induction development and tropane alkaloid production by Atropa belladonna. Journal of Natural Products, 63, 1249–1252.CrossRefGoogle Scholar
  25. 25.
    Chang, J., Luo, J., & He, G. (2009). Regulation of polyphenols accumulation by combined overexpression/silencing key enzymes of phyenylpropanoid pathway. Acta Biochimica et Biophysica Sinica, 41, 123–130.CrossRefGoogle Scholar
  26. 26.
    Holton, T. A., & Cornish, E. C. (1995). Genetics and biochemistry of anthocyanin biosynthesis. The Plant Cell, 7, 1071.CrossRefGoogle Scholar
  27. 27.
    Moriguchi, T., Kita, M., Tomono, Y., Endo-Inagaki, T., & Omura, M. (1999). One type of chalcone synthase gene expressed during embryogenesis regulates the flavonoid accumulation in citrus cell cultures. Plant and Cell Physiology, 40, 651–655.CrossRefGoogle Scholar
  28. 28.
    Jaakola, L., Määttä, K., Pirttilä, A. M., Törrönen, R., Kärenlampi, S., & Hohtola, A. (2002). Expression of genes involved in anthocyanin biosynthesis in relation to anthocyanin, proanthocyanidin, and flavonol levels during bilberry fruit development. Plant Physiology, 130, 729–739.CrossRefGoogle Scholar
  29. 29.
    Nakatsuka, A., Mizuta, D., Kii, Y., Miyajima, I., & Kobayashi, N. (2008). Isolation and expression analysis of flavonoid biosynthesis genes in evergreen azalea. Scientia Horticulturae, 118, 314–320.CrossRefGoogle Scholar
  30. 30.
    Gupta, N., Sharma, S. K., Rana, J. C., & Chauhan, R. S. (2011). Expression of flavonoid biosynthesis genes vis-à-vis rutin content variation in different growth stages of Fagopyrum species. Journal of Plant Physiology, 168, 2117–2123.CrossRefGoogle Scholar
  31. 31.
    Jackson, D., Roberts, K., & Martin, C. (1992). Temporal and spatial control of expression of anthocyanin biosynthetic genes in developing flowers of Antirrhinurn majus. Plant Journal, 2, 425–434.CrossRefGoogle Scholar
  32. 32.
    Uimari, A., & Strommer, J. (1998). Anthocyanin regulatory mutations in pea: Effects on gene expression and complementation by R-like genes of maize. Molecular and General Genetics MGG, 257, 198–204.CrossRefGoogle Scholar
  33. 33.
    Bensaddek, L., Villarreal, M. L., & Fliniaux, M.-A. (2008). Induction and growth of hairy roots for the production of medicinal compounds. Electronic Journal of Integrative Biosciences, 3, 2–9.Google Scholar
  34. 34.
    Kiani, B. H., Ullah, N., Haq, I.-u. and Mirza, B. (2015) Transgenic Artemisia dubia WALL showed altered phytochemistry and pharmacology. Arabian Journal of Chemistry.Google Scholar
  35. 35.
    Reaven, P. D., Herold, D. A., Barnett, J., & Edelman, S. (1995). Effects of vitamin E on susceptibility of low-density lipoprotein and low-density lipoprotein subfractions to oxidation and on protein glycation in NIDDM. Diabetes Care, 18, 807–816.CrossRefGoogle Scholar
  36. 36.
    Tepe, B., Sokmen, M., Akpulat, H. A., & Sokmen, A. (2006). Screening of the antioxidant potentials of six Salvia species from Turkey. Food Chemistry, 95, 200–204.CrossRefGoogle Scholar
  37. 37.
    Brand-Williams, W., Cuvelier, M., & Berset, C. (1995). Use of a free radical method to evaluate antioxidant activity. LWT--Food Science and Technology, 28, 25–30.CrossRefGoogle Scholar
  38. 38.
    Meir, S., Kanner, J., Akiri, B., & Philosoph-Hadas, S. (1995). Determination and involvement of aqueous reducing compounds in oxidative defense systems of various senescing leaves. Journal of Agricultural and Food Chemistry, 43, 1813–1819.CrossRefGoogle Scholar
  39. 39.
    Katalinic, V., Milos, M., Kulisic, T., & Jukic, M. (2006). Screening of 70 medicinal plant extracts for antioxidant capacity and total phenols. Food Chemistry, 94, 550–557.CrossRefGoogle Scholar
  40. 40.
    Erel, S. B., Reznicek, G., Şenol, S. G., Yavaşoğulu, N. Ü. K., Konyalioğlu, S., & Zeybek, A. U. (2012). Antimicrobial and antioxidant properties of Artemisia L. species from western Anatolia. Turkish Journal of Biology, 36, 75–84.Google Scholar
  41. 41.
    Sunmonu, T. O., & Afolayan, A. J. (2012). Evaluation of polyphenolic content and antioxidant activity of Artemisia afra Jacq Ex Willd. Aqueous Extract Pakistan Journal of Nutrition, 11, 520–525.Google Scholar
  42. 42.
    Bulgakov, V. P., Gorpenchenko, T. Y., Veremeichik, G. N., Shkryl, Y. N., Tchernoded, G. K., Bulgakov, D. V., Aminin, D. L., & Zhuravlev, Y. N. (2012). The rolB gene suppresses reactive oxygen species in transformed plant cells through the sustained activation of antioxidant defense. Plant Physiology, 158, 1371–1381.CrossRefGoogle Scholar
  43. 43.
    Shkryl, Y., Veremeichik, G., Bulgakov, V., Gorpenchenko, T., Aminin, D., & Zhuravlev, Y. (2010). Decreased ROS level and activation of antioxidant gene expression in Agrobacterium rhizogenes pRiA4-transformed calli of Rubia cordifolia. Planta, 232, 1023–1032.CrossRefGoogle Scholar
  44. 44.
    Le Marchand, L., Murphy, S. P., Hankin, J. H., Wilkens, L. R., & Kolonel, L. N. (2000). Intake of flavonoids and lung cancer. Journal of the National Cancer Institute, 92, 154–160.CrossRefGoogle Scholar
  45. 45.
    So, F. V., Guthrie, N., Chambers, A. F., & Carroll, K. K. (1997). Inhibition of proliferation of estrogen receptor-positive MCF-7 human breast cancer cells by flavonoids in the presence and absence of excess estrogen. Cancer Letters, 112, 127–133.CrossRefGoogle Scholar
  46. 46.
    Wenzel, U., Herzog, A., Kuntz, S., & Daniel, H. (2004). Protein expression profiling identifies molecular targets of quercetin as a major dietary flavonoid in human colon cancer cells. Proteomics, 4, 2160–2174.CrossRefGoogle Scholar
  47. 47.
    Matsubara, K., Ishihara, K., Mizushina, Y., Mori, M., & Nakajima, N. (2004). Anti-angiogenic activity of quercetin and its derivatives. Letters in Drug Design & Discovery, 1, 329–333.CrossRefGoogle Scholar
  48. 48.
    Lee, T. K., & Vairappan, C. S. (2011). Antioxidant, antibacterial and cytotoxic activities of essential oils and ethanol extracts of selected South East Asian herbs. Journal Medicine Plants Research, 5, 5284–5290.Google Scholar
  49. 49.
    Singh, N. P., Ferreira, J. F., Park, J. S., & Lai, H. C. (2011). Cytotoxicity of ethanolic extracts of Artemisia annua to Molt-4 human leukemia cells. Planta Medica-Natural Products and Medicinal Plant Research, 77, 1788.Google Scholar
  50. 50.
    Spies, L., Koekemoer, T., Sowemimo, A., Goosen, E., & Van de Venter, M. (2013). Caspase-dependent apoptosis is induced by Artemisia afra Jacq. ex Willd in a mitochondria-dependent manner after G2/M arrest. South African Journal of Botany, 84, 104–109.CrossRefGoogle Scholar
  51. 51.
    Emami, A., Zamani Taghizadeh Rabe, S., Ahi, A., & Mahmoudi, M. (2010). Study ontoxic effects of Artemisisa spp. fractions from Iran on human cancer cell lines. ZUMS Journal, 18, 58–67.Google Scholar
  52. 52.
    Mojarrab, M., Jamshidi, M., Ahmadi, F., Alizadeh, E. and Hosseinzadeh, L. (2013) Extracts of Artemisia ciniformis protect cytotoxicity induced by hydrogen peroxide in H9c2 cardiac muscle cells through the inhibition of reactive oxygen species. Advances in Pharmacological Sciences, 2013.Google Scholar
  53. 53.
    Wolfe, K., Wu, X., & Liu, R. H. (2003). Antioxidant activity of apple peels. Journal of Agricultural and Food Chemistry, 51, 609–614.CrossRefGoogle Scholar
  54. 54.
    Chang, C.-C., Yang, M.-H., Wen, H.-M., & Chern, J.-C. (2002). Estimation of total flavonoid content in propolis by two complementary colorimetric methods. Journal of Food and Drug Analysis, 10, 178–182.Google Scholar
  55. 55.
    Zu, Y., Li, C., Fu, Y., & Zhao, C. (2006). Simultaneous determination of catechin, rutin, quercetin kaempferol and isorhamnetin in the extract of sea buckthorn (Hippophae rhamnoides L.) leaves by RP-HPLC with DAD. Journal of Pharmaceutical and Biomedical Analysis, 41, 714–719.CrossRefGoogle Scholar
  56. 56.
    Prieto, P., Pineda, M., & Aguilar, M. (1999). Spectrophotometric quantitation of antioxidant capacity through the formation of a phosphomolybdenum complex: specific application to the determination of vitamin E. Analytical Biochemistry, 269, 337–341.CrossRefGoogle Scholar
  57. 57.
    Oyaizu, M. (1986) Studies on products of browning reaction—antioxidative activities of products of browning reaction prepared from glucosamine. Eiyogaku zasshi = Japanese Journal of nutrition.Google Scholar
  58. 58.
    Nawaz, H., Akhter, Z., Yameen, S., Siddiqi, H. M., Mirza, B., & Rifat, A. (2009). Synthesis and biological evaluations of some Schiff-base esters of ferrocenyl aniline and simple aniline. Journal of Organometallic Chemistry, 694, 2198–2203.CrossRefGoogle Scholar
  59. 59.
    Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65, 55–63.CrossRefGoogle Scholar
  60. 60.
    Patel, S., Gheewala, N., Suthar, A., & Shah, A. (2009). In-vitro cytotoxicity activity of Solanum nigrum extract against Hela cell line and Vero cell line. International Journal of Pharmacy and Pharmaceutical Sciences, 1, 38–46.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Erum Dilshad
    • 1
  • Sara Zafar
    • 1
  • Hammad Ismail
    • 1
  • Mohammad Tahir Waheed
    • 1
  • Rosa Maria Cusido
    • 2
  • Javier Palazon
    • 2
  • Bushra Mirza
    • 1
    Email author
  1. 1.Department of BiochemistryQuaid-i-Azam University IslamabadIslamabadPakistan
  2. 2.Laboratorio de Fisiologia Vegetal, Facultad de FarmaciaUniversidad de BarcelonaBarcelonaSpain

Personalised recommendations