Advertisement

Applied Biochemistry and Biotechnology

, Volume 179, Issue 8, pp 1445–1455 | Cite as

Immunogenicity Analysis of a Novel Subunit Vaccine Candidate Molecule—Recombinant L7/L12 Ribosomal Protein of Brucella suis

  • Zhi-Qiang DuEmail author
  • Xin Li
  • Jian-Ying Wang
Article

Abstract

Brucella was an intracellular parasite, which could infect special livestock and humans. After infected by Brucella, livestock’s reproductive system could be affected and destroyed resulting in huge economic losses. More seriously, it could be contagious from livestock to humans. So far, there is no available vaccine which is safe enough for humans. On this point, subunit vaccine has become the new breakthrough of conquering brucellosis. In this study, Brucella rL7/L12-BLS fusion protein was used as an antigen to immunize rabbits to detect the immunogenicity. The results of antibody level testing assay of rabbit antiserum indicated rL7/L12-BLS fusion protein could elicit rabbits to produce high-level IgG. And gamma interferon (IFN-γ) concentrations in rabbit antiserum were obviously up-regulated in both the rL7/L12 group and rL7/L12-BLS group. Besides, the results of quantitative real-time PCR (qRT-PCR) showed the IFN-γ gene’s expression levels of both the rL7/L12 group and rL7/L12-BLS group were obviously up-regulated. All these results suggested Brucella L7/L12 protein was an ideal subunit vaccine candidate and possessed good immunogenicity. And Brucella lumazine synthase (BLS) molecule was a favorable transport vector for antigenic protein.

Keywords

Brucella Immunogenicity L7/L12 ribosomal protein Subunit vaccine candidate 

Notes

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant No. 31460698).

References

  1. 1.
    De Figueiredo, P., Ficht, T. A., Rice-Ficht, A., Rossetti, C. A., & Adams, L. G. (2015). Pathogenesis and immunobiology of brucellosis: review of Brucella-host interactions. The American Journal of Pathology, 6, 1505–1517.CrossRefGoogle Scholar
  2. 2.
    Heller, T., Bélard, S., Wallrauch, C., Carretto, E., Lissandrin, R., Filice, C., & Brunetti, E. (2015). Patterns of hepatosplenic Brucella abscesses on cross-sectional imaging: a review of clinical and imaging features. The American Journal of Tropical Medicine and Hygiene, 4, 761–766.CrossRefGoogle Scholar
  3. 3.
    Farah, R. A., Hage, P., Al, R. A., & Afif, C. (2010). Immune thrombocytopenic purpura associated with brucellosis. Case report and review of the literature. Le Journal Médical Libanais, 4, 241–243.Google Scholar
  4. 4.
    Ducrotoy, M. J., Conde-Álvarez, R., Blasco, J. M., & Moriyón, I. (2016). A review of the basis of the immunological diagnosis of ruminant brucellosis. Veterinary Immunology and Immunopathology, 171, 81–102.CrossRefGoogle Scholar
  5. 5.
    Avila-Calderón, E. D., Lopez-Merino, A., Sriranganathan, N., Boyle, S. M., & Contreras-Rodríguez, A. (2013). A history of the development of Brucella vaccines. Biomedical Research International, 2013, 743509.Google Scholar
  6. 6.
    Whatmore, A. M. (2009). Current understanding of the genetic diversity of Brucella, an expanding genus of zoonotic pathogens. Infection, Genetics and Evolution, 6, 1168–1184.CrossRefGoogle Scholar
  7. 7.
    Gomez, G., Adams, L. G., Rice-Ficht, A., & Ficht, T. A. (2013). Host-Brucella interactions and the Brucella genome as tools for subunit antigen discovery and immunization against brucellosis. Frontier Cell Infection Microbiology, 3, 17.Google Scholar
  8. 8.
    Yüksekkaya, S., Aras, Z., & Uçan, U. S. (2013). Investigation of Brucella canis seroprevalence in brucellosis suspected cases. Mikrobiyoloji Bülteni, 1, 152–157.CrossRefGoogle Scholar
  9. 9.
    Mermer, S., Sipahi, O. R., Aydemir, S., Tasbakan, M., Pullukcu, H., Arda, B., Yamazhan, T., & Ulusoy, S. (2013). Brucella melitensis shunt infection. Neurology India, 6, 670–671.Google Scholar
  10. 10.
    Wang, Z., & Wu, Q. (2013). Research progress in live attenuated Brucella vaccine development. Current Pharmaceutical Biotechnology, 10, 887–896.Google Scholar
  11. 11.
    Dorneles, E. M., Lima, G. K., Teixeira-Carvalho, A., Araújo, M. S., Martins-Filho, O. A., Sriranganathan, N., Al, Q. H., Heinemann, M. B., & Lage, A. P. (2015). Immune response of calves vaccinated with Brucella abortus S19 or RB51 and revaccinated with RB51. PloS One, 9, e0136696.CrossRefGoogle Scholar
  12. 12.
    Benkirane, A., Idrissi, A. H., Doumbia, A., & de Balogh, K. (2014). Innocuity and immune response to Brucella melitensis Rev.1 vaccine in camels (Camelus dromedarius). Open Veterinary Journal, 2, 96–102.Google Scholar
  13. 13.
    Denisov, A. A., Karpova, O. M., Korobovtseva, Y. S., Salmakov, K. M., Sklyarov, O. D., Klimanov, A. I., Brynskykh, M. N., Shumilov, K. V., & Borovick, R. V. (2010). Development and characterization of a modified Komarov’s bullet for ballistic delivery of live Brucella abortus strains 82 and 19 to cattle and bison. Vaccine, 5, F23–30.CrossRefGoogle Scholar
  14. 14.
    Godfroid, J., & Käsbohrer, A. (2002). Brucellosis in the European Union and Norway at the turn of the twenty-first century. Veterinary Microbiology, 1–4, 135–145.CrossRefGoogle Scholar
  15. 15.
    Clausse, M., Díaz, A. G., Ghersi, G., Zylberman, V., Cassataro, J., Giambartolomei, G. H., Goldbaum, F. A., & Estein, S. M. (2013). The vaccine candidate BLS-Omp31 protects mice against Brucella canis infection. Vaccine, 51, 6129–6135.CrossRefGoogle Scholar
  16. 16.
    Brujeni, G. N., & Gharibi, D. (2012). Development of DNA-designed avian IgY antibodies for detection of Mycobacterium avium subsp. paratuberculosis heat shock protein 70 (Hsp70) and anti-Hsp70 antibodies in the serum of normal cattle. Applied Biochemistry and Biotechnology, 1, 14–23.CrossRefGoogle Scholar
  17. 17.
    Oliveira, S. C., Giambartolomei, G. H., & Cassataro, J. (2011). Confronting the barriers to develop novel vaccines against brucellosis. Expert Review of Vaccines, 9, 1291–1305.CrossRefGoogle Scholar
  18. 18.
    Singh, D., Goel, D., & Bhatnagar, R. (2015). Recombinant L7/L12 protein entrapping PLGA (poly lactide-co-glycolide) micro particles protect BALB/c mice against the virulent B. abortus 544 infection. Vaccine, 24, 2786–2792.CrossRefGoogle Scholar
  19. 19.
    Bellido, D., Craig, P. O., Mozgovoj, M. V., Gonzalez, D. D., Wigdorovitz, A., Goldbaum, F. A., & Dus Santos, M. J. (2009). Brucella spp. lumazine synthase as a bovine rotavirus antigen delivery system. Vaccine, 1, 136–145.CrossRefGoogle Scholar
  20. 20.
    Cassataro, J., Pasquevich, K. A., Estein, S. M., Laplagne, D. A., Velikovsky, C. A., de la Barrera, S., Bowden, R., Fossati, C. A., Giambartolomei, G. H., & Goldbaum, F. A. (2007). A recombinant subunit vaccine based on the insertion of 27 amino acids from Omp31 to the N-terminus of BLS induced a similar degree of protection against B. ovis than Rev.1 vaccination. Vaccine, 22, 4437–4446.CrossRefGoogle Scholar
  21. 21.
    Du, Z. Q., & Wang, J. Y. (2015). A novel lumazine synthase molecule from Brucella significantly promotes the immune-stimulation effects of antigenic protein. Genetics and Molecular Research, 4, 13084–13095.CrossRefGoogle Scholar
  22. 22.
    Díaz, A. G., Clausse, M., Paolicchi, F. A., Fiorentino, M. A., Ghersi, G., Zylberman, V., Goldbaum, F. A., & Estein, S. M. (2013). Immune response and serum bactericidal activity against Brucella ovis elicited using a short immunization schedule with the polymeric antigen BLSOmp31 in rams. Veterinary Immunology and Immunopathology, 1–2, 36–41.CrossRefGoogle Scholar
  23. 23.
    Du, Z. Q., & Jin, Y. H. (2015). Molecular characterization and antibacterial activity analysis of two novel penaeidin isoforms from Pacific white shrimp, Litopenaeus vannamei. Applied Biochemistry and Biotechnology, 8, 1607–1620.CrossRefGoogle Scholar
  24. 24.
    Oliveira, S. C., de Almeida, L. A., Carvalho, N. B., Oliveira, F. S., & Lacerda, T. L. (2012). Update on the role of innate immune receptors during Brucella abortus infection. Veterinary Immunology and Immunopathology, 1–2, 129–135.CrossRefGoogle Scholar
  25. 25.
    Baldwin, C. L., & Goenka, R. (2006). Host immune responses to the intracellular bacteria Brucella: does the bacteria instruct the host to facilitate chronic infection? Critical Reviews in Immunology, 5, 407–442.CrossRefGoogle Scholar
  26. 26.
    Wernery, U. (2014). Camelid brucellosis: a review. Revue Scientifique et Technique, 3, 839–857.CrossRefGoogle Scholar
  27. 27.
    Grilló, M. J., Blasco, J. M., Gorvel, J. P., Moriyón, I., & Moreno, E. (2012). What have we learned from brucellosis in the mouse model? Veterinary Research, 43, 29.CrossRefGoogle Scholar
  28. 28.
    Dorneles, E. M., Teixeira-Carvalho, A., Araújo, M. S., Sriranganathan, N., & Lage, A. P. (2015). Immune response triggered by Brucella abortus following infection or vaccination. Vaccine, 31, 3659–3666.CrossRefGoogle Scholar
  29. 29.
    Luo, D., Ni, B., Li, P., Shi, W., Zhang, S., Han, Y., Mao, L., He, Y., Wu, Y., & Wang, X. (2006). Protective immunity elicited by a divalent DNA vaccine encoding both the L7/L12 and Omp16 genes of Brucella abortus in BALB/c mice. Infection and Immunity, 5, 2734–2741.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.School of Life Science and TechnologyInner Mongolia University of Science and TechnologyBaotouChina
  2. 2.Baotou Tumour HospitalBaotouChina

Personalised recommendations